首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One strategy developed by bacteria to resist the action of beta-lactam antibiotics is the expression of metallo-beta-lactamases. CphA from Aeromonas hydrophila is a member of a clinically important subclass of metallo-beta-lactamases that have only one zinc ion in their active site and for which no structure is available. The crystal structures of wild-type CphA and its N220G mutant show the structural features of the active site of this enzyme, which is modeled specifically for carbapenem hydrolysis. The structure of CphA after reaction with a carbapenem substrate, biapenem, reveals that the enzyme traps a reaction intermediate in the active site. These three X-ray structures have allowed us to propose how the enzyme recognizes carbapenems and suggest a mechanistic pathway for hydrolysis of the beta-lactam. This will be relevant for the design of metallo-beta-lactamase inhibitors as well as of antibiotics that escape their hydrolytic activity.  相似文献   

2.
The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding.  相似文献   

3.
Reported herein is a fluorescence assay for the rapid screening of metallo-β-lactamase (MBL) inhibitors. This assay employs a fluorogenic carbapenem CPC-1 as substrate and is compatible with all MBLs, including B1, B2 and B3 subclass MBLs. The efficiency of this assay was demonstrated by the rapid inhibition screening of a number of molecules against B2 MBL CphA and 2,3-dimercaprol was identified as a potent CphA inhibitor.  相似文献   

4.
Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.  相似文献   

5.
The subclass B3 FEZ-1 beta-lactamase produced by Fluoribacter (Legionella) gormanii is a Zn(II)-containing enzyme that hydrolyzes the beta-lactam bond in penicillins, cephalosporins, and carbapenems. FEZ-1 has been extensively studied using kinetic, computational modeling and x-ray crystallography. In an effort to probe residues potentially involved in substrate binding and zinc binding, five site-directed mutants of FEZ-1 (H121A, Y156A, S221A, N225A, and Y228A) were prepared and characterized using metal analyses and steady state kinetics. The activity of H121A is dependent on zinc ion concentration. The H121A monozinc form is less active than the dizinc form, which exhibits an activity similar to that of the wild type enzyme. Tyr156 is not essential for binding and hydrolysis of the substrate. Substitution of residues Ser221 and Asn225 modifies the substrate profile by selectively decreasing the activity against carbapenems. The Y228A mutant is inhibited by the product formed upon hydrolysis of cephalosporins. A covalent bond between the side chain of Cys200 and the hydrolyzed cephalosporins leads to the formation of an inactive and stable complex.  相似文献   

6.
The initial nucleophilic substitution step of biapenem hydrolysis catalyzed by a subclass B2 metallo-beta-lactamase (CphA from Aeromonas hydrophila) is investigated using hybrid quantum mechanical/molecular mechanical methods and density functional theory. We focused on a recently proposed catalytic mechanism that involves a non-metal-binding water nucleophile in the active site of the monozinc CphA. Both theoretical models identified a single transition state featuring nearly concomitant nucleophilic addition and elimination steps, and the activation free energy from the potential of mean force calculations was estimated to be approximately 14 kcal/mol. The theoretical results also identified the general base for activating the water nucleophile to be the metal-binding Asp-120 rather than His-118, as suggested earlier. The protonation of Asp-120 leads to cleavage of the O(delta2)-Zn coordination bond, whereas the negatively charged nitrogen leaving group resulting from the ring opening replaces Asp-120 as the fourth ligand of the sole zinc ion. The electrophilic catalysis by the metal ion provides sufficient stabilization for the leaving group to avoid a tetrahedral intermediate. The theoretical studies provided detailed insights into the catalytic strategy of this unique metallo-beta-lactamase.  相似文献   

7.
d- and l-captopril are competitive inhibitors of metallo-beta-lactamases. For the enzymes from Bacillus cereus (BcII) and Aeromonas hydrophila (CphA), we found that the mononuclear enzymes are the favored targets for inhibition. By combining results from extended x-ray absorption fine structure, perturbed angular correlation of gamma-rays spectroscopy, and a study of metal ion binding, we derived that for Cd(II)1-BcII, the thiolate sulfur of d-captopril binds to the metal ion located at the site defined by three histidine ligand residues. This is also the case for the inhibited Co(II)1 and Co(II)2 enzymes as observed by UV-visible spectroscopy. Although the single metal ion in Cd(II)1-BcII is distributed between both available binding sites in both the uninhibited and the inhibited enzyme, Cd(II)1-CphA shows only one defined ligand geometry with the thiolate sulfur coordinating to the metal ion in the site composed of 1 Cys, 1 His, and 1 Asp. CphA shows a strong preference for d-captopril, which is also reflected in a very rigid structure of the complex as determined by perturbed angular correlation spectroscopy. For BcII and CphA, which are representatives of the metallo-beta-lactamase subclasses B1 and B2, we find two different inhibitor binding modes.  相似文献   

8.
Nucleotidase activities resembling subclass I and subclass II of human pyrimidine 5'-nucleotidases (P5N) were detected in chicken red blood cells (RBCs). In chicken RBCs from untreated controls, the activity of the subclass II enzyme was about one third of that of subclass I enzyme, whereas that ratio was approximately 5:1 in rat or human RBCs. The subclass I activity in chicken RBCs was increased 5- to 6-fold upon erythropoietic induction by phenylhydrazine administration, but the subclass II activity did not increase under these conditions. The subclass I enzyme was purified to near homogeneity. Its molecular mass was about 35 kDa as estimated by gel filtration and SDS-polyacrylamide gel electrophoresis. Its N-terminal 12 amino acids, PEFQKKTVHIKD, were also determined. The catalytic properties of the subclass I enzyme were very similar to those of the human enzyme with regard to substrate (preferential hydrolysis of CMP, dCMP, UMP), Km values, optimum pH, and metal ion requirements. Antibodies against chicken P5N subclass I were raised in rats. The chicken P5N-I as well as the rat P5N-I proteins could be detected by antibodies in Western blot analyses, but not the P5N-II proteins. These findings indicate that P5N subclass I may have an important function in chicken erythropoiesis.  相似文献   

9.
The biosynthesis of cyanophycin granule polypeptides is catalyzed by cyanophycin synthetase, CphA. In this study, the role of the C-terminal region of CphA from Nostoc ellipsosporum NE1, CphA(NE1), was analyzed using a tailor-made C-terminus truncated library. The expression level of truncated CphA(NE1) in E. coli depended on the stop codons that were used. The expression vector that had the amber stop codon TAG produced more than twice amount of CphA(NE1) as a vector that contained the ochre codon TAA. CphA(NE1DeltaC45), which was truncated up to 45 amino acids at its C-terminus, retained full enzymatic activity and produced polymers. However, the removal of one additional amino acid, Glu(856), resulted in complete inactivation of CphA(NE1DeltaC46). Replacement of Glu(856) by valine or alanine confirmed the importance of this residue for the activity of CphA(NE1), as it resulted in the complete inactivation of the enzyme. In addition, thermostability analysis revealed a dramatic decrease in the thermostability of CphA(NE1) after removal of the region from Leu(867) to Leu(870). The gel filtration analysis showed that CphA(NE1Delta46C) still formed a dimer form even its enzyme activity was lost completely. These results suggest that Glu(856) is critical for CphA(NE1) catalytic activity and that the predicted alpha-helical region that ranges from Val(858) to Leu(870) is important for the thermostability of the enzyme.  相似文献   

10.
The basidiomycete Phanerochaete chrysosporium produces two glycoside hydrolase family 1 intracellular beta-glucosidases, BGL1A and BGL1B, during the course of cellulose degradation. In order to clarify the catalytic difference between two enzymes, in spite of their high similarity in amino acid sequences (65%), five amino acids around the catalytic site of BGL1A were individually mutated to those of BGL1B (V173C, M177L, D229N, H231D, and K253A), and the effects of the mutations on cellobiose hydrolysis were evaluated. When the kinetic parameters (K(m) and k(cat)) were compared at the optimum pH for the wild-type enzyme, the kinetic efficiency was decreased in the cases of D229N, H231D, and K253A, but not V173C or M177L. The pH dependence of cellobiose hydrolysis showed a significantly more acidic pH profile for the D229N mutant, compared with the wild-type enzyme. Since D229 is located between K253 and the putative acid/base catalyst E170, we prepared the double mutant D229N/K253A, and found that its hydrolytic activity at neutral pH was restored to that of the wild-type enzyme. Our results indicate that the interaction between D229 and K253 is critical for the pH dependence and catalytic activity of BGL1A. Biotechnol. Bioeng.  相似文献   

11.
Human cyclooxygenase-2 (hCox-2) is a key enzyme in the biosynthesis of prostaglandins and the target of nonsteroidal anti-inflammatory drugs. Recombinant hCox-2 overexpressed in a vaccinia virus (VV)-COS-7 system comprises two glycoforms. Removal of the N-glycosylation consensus sequence at Asn580(N580Q and S582A mutants) resulted in the expression of protein comprising a single glycoform, consistent with the partial N-glycosylation at this site in the wild-type (WT) enzyme. The specific cyclooxygenase activities of the purified WT and N580Q mutant were equivalent (40 ± 3 μmol O2/min/mg) and titrations with diclofenac showed no difference in inhibitor sensitivities of WT and both mutants. Results of the expression of WT and N580Q hCox-2 in aDrosophilaS2 cell system were also consistent with the N-glycosylation at this site, but low levels of activity were obtained. High levels of N-glycosylation heterogeneity are observed in hCox-2 expressed using recombinant baculovirus (BV) in Sf9 cells. Expression of a double N-glycosylation site mutant in Sf9 cells, N580Q/N592Q, resulted in a decrease in glycosylation but no clear decrease in heterogeneity, indicating that the high degree of N-glycosylation heterogeneity observed with the BV-Sf9 system is not due to partial glycosylation of both Asn580and Asn592. N-linked oligosaccharide profiling of purified VV and BV WT and S582A mutant hCox-2 showed the presence of high mannose structures, (Man)n(GlcNAc)2,n= 9, 8, 7, 6. The S582A mutant was the most homogeneous with (Man)9(GlcNAc)2comprising greater than 50% of oligosaccharides present. Analysis of purified VV WT and S582A mutant hCox-2 by liquid chromatography–electrospray ionization–mass spectrometry showed an envelope of peaks separated by approximately 160 Da, corresponding to differences of a single monosaccharide. The difference between the highest mass peaks of the two envelopes, of approximately 1500 Da, is consistent with the wild-type enzyme containing an additional high mannose oligosaccharide.  相似文献   

12.
The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.  相似文献   

13.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

14.
The L1 metallo-beta-lactamase from Stenotrophomonas maltophilia is unique among this class of enzymes because it is tetrameric. Previous work predicted that the two regions of important intersubunit interaction were the residue Met-140 and the N-terminal extensions of each subunit. The N-terminal extension was also implicated in beta-lactam binding. Mutation of methionine 140 to aspartic acid results in a monomeric L1 beta-lactamase with a greatly altered substrate specificity profile. A 20-amino acid N-terminal deletion mutant enzyme (N-Del) could be isolated in a tetrameric form but demonstrated greatly reduced rates of beta-lactam hydrolysis and different substrate profiles compared with that of the parent enzyme. Specific site-directed mutations of individual N terminus residues were made (Y11S, W17S, and a double mutant L5A/L8A). All N-terminal mutant enzymes were tetramers and all showed higher K(m) values for ampicillin and nitrocefin, hydrolyzed ceftazidime poorly, and hydrolyzed imipenem more efficiently than ampicillin in contrast to wild-type L1. Nitrocefin turnover was significantly increased, probably because of an increased rate of breakdown of the intermediate species due to a lack of stabilizing forces. K(m) values for monomeric L1 were greatly increased for all antibiotics tested. A model of a highly mobile N-terminal extension in the monomeric enzyme is proposed to explain these findings. Tetrameric L1 shows negative cooperativity, which is not present in either the monomer or N-terminal deletion enzymes, suggesting that the cooperative effect is mediated via N-terminal intersubunit interactions. These data indicate that while the N terminus of L1 is not essential for beta-lactam hydrolysis, it is clearly important to its activity and substrate specificity.  相似文献   

15.
Lee LV  Poyner RR  Vu MV  Cleland WW 《Biochemistry》2000,39(16):4821-4830
H97N, H95N, and Y229F mutants of L-ribulose-5-phosphate 4-epimerase had 10, 1, and 0.1%, respectively, of the activity of the wild-type (WT) enzyme when activated by Zn(2+), the physiological activator. Co(2+) and Mn(2+) replaced Zn(2+) in Y229F and WT enzymes, although less effectively with the His mutants, while Mg(2+) was a poorly bound, weak activator. None of the other eight tyrosines mutated to phenylalanine caused a major loss of activity. The near-UV CD spectra of all enzymes were nearly identical in the absence of metal ions and substrate, and addition of substrate without metal ion showed no effect. When both substrate and Zn(2+) were present, however, the positive band at 266 nm increased while the negative one at 290 nm decreased in ellipticity. The changes for the WT and Y229F enzymes were greater than for the two His mutants. With Co(2+) as the metal ion, the CD and absorption spectra in the visible region were different, showing little ellipticity in the absence of substrate and a weak absorption band at 508 nm. With substrate present, however, an intense absorption band at 555 nm (epsilon = 150-175) with a negative molar ellipticity approaching 2000 deg cm(2) dmol(-1) appears with WT and Y229F enzymes. With the His mutants, the changes induced by substrate were smaller, with negative ellipticity only half as great. The WT, Y229F, H95N, and H97N enzymes all catalyze a slow aldol condensation of dihydroxyacetone and glycolaldehyde phosphate with an initial k(cat) of 1.6 x 10(-3) s(-1). The initial rate slowed most rapidly with WT and H97N enzymes, which have the highest affinity for the ketopentose phosphates formed in the condensation. The EPR spectrum of enzyme with Mn(2+) exhibited a drastic decrease upon substrate addition, and by using H(2)(17)O, it was determined that there were three waters in the coordination sphere of Mn(2+) in the absence of substrate. These data suggest that (1) the substrate coordinates to the enzyme-bound metal ion, (2) His95 and His97 are likely metal ion ligands, and (3) Tyr229 is not a metal ion ligand, but may play another role in catalysis, possibly as an acid-base catalyst.  相似文献   

16.
Liu D  Karsten WE  Cook PF 《Biochemistry》2000,39(39):11955-11960
Site-directed mutagenesis was used to change K199 in the Ascaris suum NAD-malic enzyme to A and R and Y126 to F. The K199A mutant enzyme gives a 10(5)-fold decrease in V and a 10(6)-fold decrease in V/K(malate) compared to the WT enzyme. In addition, the ratio for partitioning of the oxalacetate intermediate toward pyruvate and malate changes from a value of 0.4 for the WT enzyme to 1.6 for K199A, and repeating the experiment with A-side NADD gives isotope effects of 3 and 1 for the WT and K199A mutant enzymes, respectively. The K199R mutant enzyme gives only a factor of 10 decrease in V, and the pK for the general acid in this mutant enzyme has increased from 9 for the WT enzyme to >10 for the K199R mutant enzyme. Tritium exchange from solvent into pyruvate is catalyzed by the WT enzyme, but not by the K199A mutant enzyme. The Y126F mutant enzyme gives a 10(3)-fold decrease in V. The oxalacetate partition ratio and isotope effect on oxalacetate reduction for the Y126F mutant enzyme are identical, within error, to those measured for the WT enzyme. Thus, Y126 is important to the overall reaction, but its role at present is unclear. Data are consistent with K199 functioning as the general acid that protonates C3 of enolpyruvate to generate the pyruvate product in the malic enzyme reaction.  相似文献   

17.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

18.
Singh K  Modak MJ 《Biochemistry》2005,44(22):8101-8110
Previous structural and biochemical data indicate a participation of the J-helix of Escherichia coli pol I in primer positioning at the polymerase and exonuclease sites. The J-helix contains three polar residues: N675, Q677, and N678. Preliminary characterization of alanine substitutions of these residues showed that only Q677A DNA polymerase has substantially decreased polymerase and increased exonuclease activity. The Q677A enzyme had approximately 2- and approximately 5-fold greater exonuclease activity than the wild type (WT) with mismatched and matched template-primers (TPs), respectively. N675A and N678A DNA polymerases did not differ significantly from the WT in these activities, despite the fact that both residues are seen to interact with the TP in various pol I-DNA complexes. Pre-steady-state kinetic measurements for the exonuclease activity of WT and mutant enzymes indicated nearly identical DNA binding affinity for ssDNA and mismatched TPs. However, with a matched TP, Q677A DNA polymerase exhibited increased exonuclease site affinity. The most important characteristic of Q677A DNA polymerase was its ability to continue cleavage into the matched region of the TP after mismatch excision, in contrast to the WT and other mutant enzymes. The increase in the exonuclease activity of Q677A DNA polymerase was further determined not to be solely due to the weakened binding at the polymerase site, by comparison with another polymerase-defective mutant enzyme, namely, R668A DNA polymerase. These enzymes have significantly decreased DNA binding affinity at the polymerase site, yet the exonuclease activity parameters of R668A DNA polymerase remain similar to those of the WT. These results strongly suggest that participation of Q677 is required for positioning the primer terminus (a) in the polymerase site for continued nucleotide addition and (b) in the 3'-exonuclease site for the controlled removal of mismatched nucleotides.  相似文献   

19.
The CphAII protein from the hyperthermophile Aquifex aeolicus shows the five conserved motifs of the metallo-β-lactamase (MBL) superfamily and presents 28% identity with the Aeromonas hydrophila subclass B2 CphA MBL. The gene encoding CphAII was amplified by PCR from the A. aeolicus genomic DNA and overexpressed in Escherichia coli using a pLex-based expression system. The recombinant CphAII protein was purified by a combination of heating (to denature E. coli proteins) and two steps of immobilized metal affinity chromatography. The purified enzyme preparation did not exhibit a β-lactamase activity but showed a metal-dependent phosphodiesterase activity versus bis-p-nitrophenyl phosphate and thymidine 5′-monophosphate p-nitrophenyl ester, with an optimum at 85°C. The circular dichroism spectrum was in agreement with the percentage of secondary structures characteristic of the MBL αββα fold.  相似文献   

20.
The hydride transfer reaction catalyzed by dihydrofolate reductase (DHFR) is a model for examining how protein dynamics contribute to enzymatic function. The relationship between functional motions and enzyme evolution has attracted significant attention. Recent studies on N23PP Escherichia coli DHFR (ecDHFR) mutant, designed to resemble parts of the human enzyme, indicated a reduced single turnover rate. NMR relaxation dispersion experiments with that enzyme showed rigidification of millisecond Met-20 loop motions (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234–238). A more recent study of this mutant, however, indicated that fast motions along the reaction coordinate are actually more dispersed than for wild-type ecDHFR (WT). Furthermore, a double mutant (N23PP/G51PEKN) that better mimics the human enzyme seems to restore both the single turnover rates and narrow distribution of fast dynamics (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159–11064). Here, we measured intrinsic kinetic isotope effects for both N23PP and N23PP/G51PEKN double mutant DHFRs over a temperature range. The findings indicate that although the C-H→C transfer and dynamics along the reaction coordinate are impaired in the altered N23PP mutant, both seem to be restored in the N23PP/G51PEKN double mutant. This indicates that the evolution of G51PEKN, although remote from the Met-20 loop, alleviated the loop rigidification that would have been caused by N23PP, enabling WT-like H-tunneling. The correlation between the calculated dynamics, the nature of C-H→C transfer, and a phylogenetic analysis of DHFR sequences are consistent with evolutionary preservation of the protein dynamics to enable H-tunneling from well reorganized active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号