首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD44 is an integral membrane glycoprotein that has diverse functions in cell-cell and cell-substrate interactions. It has been suggested that it may be a determinant of metastatic and invasive behavior in carcinomas. The immunohistochemical expression of CD44 was examined in a series of 34 squamous cell carcinomas, 13 in situ carcinomas, 35 cases with various degrees of epithelial dysplasia, 10 papillomas and 17 cases of keratosis. We used the monoclonal mouse anti-human phagocytic glycoprotein-1 CD44 (clone DF 1485), on formalin-fixed, paraffin-embedded tissue. CD44 expression was correlated with the expression of Rb and p53 proteins, with the proliferative indices Ki-67 and PCNA as well as with conventional clinicopathological data. The mean value of CD44 expression was 78.84 in squamous cell carcinomas, 78.04 in situ carcinomas, 54.93 in dysplasia, 26.8 in papillomas and 24.97 in keratosis. There was no significant difference of CD44 expression between in situ and invasive carcinomas. However, a strong difference of reaction between carcinomas and the other cases was observed. CD44 expression was statistically higher in dysplastic lesions than the cases of keratosis (p < 0.0001) and papillomas (p = 0.01). In the group of invasive carcinomas, CD44 expression was statistically correlated with pRb (p = 0.011), while in preinvasive lesions it was correlated with PCNA (p = 0.016). The relationship with the degree of dysplasia or grade of carcinoma and p53 protein expression was insignificant. These observations suggest that CD44 expression may be involved in the multiple mechanism of the development and progression of laryngeal lesions and may help to predict the risk of transformation of the benign or precancerous lesions to cancer.  相似文献   

2.
Chronic inflammation is implicated in the pathophysiology of ovarian cancer. Tumor necrosis factor-alpha (TNF-alpha), a major inflammatory cytokine, is abundant in the ovarian cancer microenvironment. TNF-alpha modulates the expression of CD44 in normal T lymphocytes and CD44 is implicated in ovarian carcinogenesis and metastases. However, little is known about the role of TNF-alpha in CD44 expression of cancer cells. Recent clinical work using TNF-alpha inhibitors for the treatment of ovarian cancer makes the study of TNF-alpha interactions with CD44 crucial to determining treatment a success or a failure. We studied the effect of TNF-alpha on ovarian cancer cells viability, CD44 expression, and in vitro migration/invasion. Our results revealed that TNF-alpha differentially modulates the expression of CD44 in TNF-alpha-resistant ovarian cancer cells, affecting their in vitro migration, invasion, and binding to hyaluronic acid. TNF-alpha up-regulation of CD44 expression was dependent on the activation of c-Jun NH(2)-terminal kinase (JNK) and this activation was accompanied by an increase in their invasive phenotype. On the contrary, if TNF-alpha failed to induce JNK phosphorylation, the end result was down-regulation of both CD44 expression and the invasive phenotype. These results were confirmed by the use of JNK inhibitors and a TNF receptor competitive inhibitor.  相似文献   

3.
目的:观察喉癌病人癌组织内CDla~ 树突状细胞(dendritic cells,DC)的分布、形态学特征以及血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达情况,同时探讨喉癌组织CDla~ DC分布与VEGF表达的关系。方法:采用抗VEGF、抗CDla抗体进行免疫组化染色和透射电镜等方法研究了42例喉癌组织。结果:喉癌组织CDla~ 树突状细胞树突状细胞形态不规则,表面有许多不规则树状突起。大部分散在分布于癌巢内,与肿瘤细胞有密切接触,少量分布于癌巢之间的间质和癌周组织。喉癌组织内CDla~ DC密度与喉癌临床期次呈明显的负相关,而VEGF的表达与喉癌临床期次呈明显的正相关。喉癌组织中VEGF表达明显升高的病例,其CDla~ DC密度显著降低。结论:癌巢内树突状细胞为不成熟状态的DC,与肿瘤细胞密切接触而捕获肿瘤抗原。喉癌组织中VEGF表达与DC含量呈负相关。  相似文献   

4.
Squamous cell laryngeal carcinoma undergoes significant structural-related modifications of the extracellular matrix components (ECM), the most characteristics being the presence of degraded collagen, aggrecan and hyaluronan. We examined the presence of hyaluronidase and of the cellular hyaluronan receptor CD44 during the various stages of cancer. ECM components were extracted by using PBS, 4 M GdnHCl and 4 M GdnHCl-0.1% Triton-X 100 sequentially and hyaluronidase and CD44 analyzed by zymography and immunochemistry techniques. Total RNA was also extracted and the mRNA of the various hyaluronidases and of CD44 was analyzed after amplification with RT-PCR. Hyaluronidase was detected as a double band of 45 and 55 kDa molecular mass, only in cancer samples. The analysis of mRNA indicated an aberrant expression of PH-20, the testicular-type hyaluronidase, at late stages of cancer and an overexpression of HYAL1 only at stage IV. In addition, CD44 was identified in two protein bands of 80 and 64 kDa in cancer samples. The analysis of mRNA showed that hyaluronan receptor was expressed in a stage-related order. Thus, it could be suggested that in laryngeal squamous cell carcinoma, cancer cells migrated and proliferated under the influence of small molecular mass hyaluronan, by expressing increased amounts of its receptor.  相似文献   

5.
6.
Selenium nanoparticles (Se NPs) have been served as promising materials for biomedical applications, especially for cancer treatment. The anti-cancer effects of Se NPs against cancer cells have been widely studied in recent years, but whether Se NPs can induce the changes of cell membrane bio-mechanical properties in cancer cells still remain unexplored. In this Letter, we prepared Se NPs for investigating the intracellular localization of Se NPs in MCF-7 cells and determined the effects of Se NPs on apoptosis and necrosis in MCF-7 cells. Especially, we reported for the first time about the effects of Se NPs on the bio-mechanical properties of cancer cells and found that Se NPs could remarkably decrease the adhesion force and Young’s modulus of MCF-7 cells. To further understand the potential mechanisms about how Se NPs affect the bio-mechanical properties of MCF-7 cells, we also investigated the expression of CD44 molecules, the structure and the amounts of F-actin. The results indicated that the decreased adhesion force between AFM tip and cell membrane was partially due to the changes of membrane molecules induced by Se NPs, such as the down-regulation of trans-membrane CD44 molecules. Additionally, the decrease of Young’s modulus of MCF-7 cells was due to the dis-organization and down-regulation of F-actin induced by Se NPs. These results collectively suggested that cell membrane was of vital importance in Se NPs induced toxicity in cancer cells, which could be served as a potential target for cancer treatment by Se NPs.  相似文献   

7.
8.
CD44 has been the subject of extensive research for more than 3 decades because of its role in breast cancer, in addition to many physiological processes, but interestingly, conflicting data implicate CD44 in both tumor suppression and tumor promotion. CD44 has been shown to promote protumorigenic signaling and advance the metastatic cascade. On the other hand, CD44 has been shown to suppress growth and metastasis. Histopathological studies of human breast cancer have correlated CD44 expression with both favorable and unfavorable clinical outcomes. In recent years, CD44 has garnered significant attention because of its utility as a stem cell marker and has surfaced as a potential therapeutic target, necessitating a greater understanding of CD44 in breast cancer. In this review, we attempt to unify the literature implicating CD44 in both tumor promotion and suppression, and explain its dualistic nature.  相似文献   

9.
10.
CD44 is a principal cell-surface receptor for hyaluronan (HA). Up-regulation of CD44 is often associated with morphogenesis and tumor invasion. On the contrary, reduction of cell-cell adhesion due to down-regulation of E-cadherin is associated with the invasive and metastatic phenotype of carcinomas. In our current study, we investigated the functional relationship between CD44 and E-cadherin. We established an inverse correlation between CD44 and E-cadherin indicating that the cells expressing higher levels of E-cadherin display weaker binding affinity between CD44 and HA. By using TA3 murine mammary carcinoma (TA3) cells, which display CD44-dependent HA binding, branching morphogenesis, and invasion, we demonstrated an inverse functional relationship between CD44 and E-cadherin by transfecting exogenous E-cadherin into the cells. Our results showed that increased expression of E-cadherin in TA3 cells, but not ICAM-1, weakens the binding between CD44 and HA and blocks spreading of the cells on HA substratum and CD44-mediated branching morphogenesis and tumor cell invasion. The results reported here demonstrated for the first time that E-cadherin negatively regulated CD44-HA interaction and CD44 function and suggested that balanced function of CD44 and E-cadherin may be essential for normal epithelial cell functions, and imbalanced up-regulation of CD44 function and/or down-regulation of E-cadherin function likely contributes to tumor progression.  相似文献   

11.
High expression of EpCAM and the tetraspanin CO-029 has been associated with colorectal cancer progression. However, opposing results have been reported on CD44 variant isoform v6 (CD44v6) expression. We recently noted in rat gastrointestinal tumors that EpCAM, claudin-7, CO-029, and CD44v6 were frequently coexpressed and could form a complex. This finding suggested the possibly that the complex, rather than the individual molecules, could support tumor progression. The expression of EpCAM, claudin-7, CO-029, and CD44v6 expression was evaluated in colorectal cancer (n = 104), liver metastasis (n = 66), and tumor-free colon and liver tissue. Coexpression and complex formation of the molecules was correlated with clinical variables and apoptosis resistance. EpCAM, claudin-7, CO-029, and CD44v6 expression was up-regulated in colon cancer and liver metastasis. Expression of the four molecules did not correlate with tumor staging and grading. However, coexpression inversely correlated with disease-free survival. Coexpression was accompanied by complex formation and recruitment into tetraspanin-enriched membrane microdomains (TEM). Claudin-7 contributes to complex formation inasmuch as in the absence of claudin-7, EpCAM hardly associates with CO-029 and CD44v6 and is not recruited into TEMs. Notably, colorectal cancer lines that expressed the EpCAM/claudin-7/CO-029/CD44v6 complex displayed a higher degree of apoptosis resistance than lines devoid of any one of the four molecules. Expression of EpCAM, claudin-7, CO-029, and CD44v6 by themselves cannot be considered as prognostic markers in colorectal cancer. However, claudin-7-associated EpCAM is recruited into TEM and forms a complex with CO-029 and CD44v6 that facilitates metastasis formation.  相似文献   

12.
The ceramide nanoliposome (CNL) has shown promise in being able to treat a variety of primary tumors. However, its potential for treating metastatic cancer remains unknown. In this study, we demonstrate that CNL increases anoikis while preventing cancer cell extravasation under both static and physiological fluid flow conditions. Mechanistically, CNL limits metastases by decreasing CD44 protein levels in human breast and pancreatic cancer cells via lysosomal degradation of CD44, independent of palmitoylation or proteasome targeting. siRNA down-regulation of CD44 mimics CNL-induced anoikis and diminished extravasation of cancer cells. Taken together, our data indicate that ceramide limits CD44-dependent cancer cell migration, suggesting that CNL could be used to prevent and treat solid tumor metastasis.  相似文献   

13.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

14.
Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.  相似文献   

15.
目的:探讨肿瘤标志因子CD44及CD24在乳腺癌组织中的表达及与临床病理特征的关系。方法:选择从2015年1月到2017年1月在我院接受手术治疗的乳腺癌患者80例纳入本次研究,另选同期在我院治疗的导管原位癌患者30例,小叶增生患者20例及导管单纯增生患者20例的组织提取标本进行对照,分析CD44及CD24在乳腺癌组织和不同病变类型中的表达,并分析CD44~+/CD24~-细胞在癌症免疫分型中的表达以及CD44~+/CD24~-细胞与乳腺浸润导管癌相关病理特征的关系。结果:乳腺癌组织内的CD44阳性率为52.50%,CD24的阳性率为57.50%,均显著高于癌旁组织的11.25%和15.00%,差异均有统计学意义(均P0.05)。CD44及CD24在导管原位癌及乳腺浸润导管癌中的阳性率高于小叶增生和导管单纯增生,导管原位癌的阳性率高于乳腺浸润导管癌,差异均有统计学意义(均P0.05),且CD44在乳腺浸润导管癌不同分化类型中的阳性率差异有统计学意义(P0.05)。CD24在乳腺浸润导管癌不同分化类型中的阳性率差异不显著(P0.05)。CD44~+/CD24~-细胞在不同癌症免疫分型以及不同分化中的阳性率比较差异均有统计学意义(P0.05)。CD44~+/CD24~-细胞与乳腺浸润导管癌患者的年龄、月经状态、肿瘤直径、淋巴结转移以及远处转移之间均无明显关系(均P0.05)。结论:CD44及CD24在乳腺癌组织内存在较高的阳性率,且CD44~+/CD24~-在乳腺原位癌及低分化的乳腺癌组织内具有更高的阳性率,临床上可尝试通过监测CD44~+/CD24~-的阳性表达情况评价患者的病情及预后。  相似文献   

16.
The hypothesis on cancer stem cells assumes the existence of small subpopulation of cells that possess the ability to undergo self-renewal and can give rise to the diversity of differentiated cells that form the tumour. It has been accepted that CD44+/CD24?/low phenotype is one of the features characterizing breast cancer stem cells. The aim of our study was to assess (1) prognostic significance of CD44/CD24 expression as well as (2) a relation between the above-mentioned phenotype and breast cancer subtypes [based on estrogen (ER), progesterone receptors, human epidermal growth factor receptor 2 and Ki67 status] and expression of selected markers such as fascin, laminin-5 gamma-2 chain, cytokeratin (CK) 5/6 and 8/18, epidermal growth factor receptor (EGFR), smooth muscle actin, P-cadherin and lymphocytic infiltration in invasive ductal breast cancer patients (T ≥ 1, N ≥ 1, M0), who underwent mastectomy followed by chemotherapy (with taxanes and/or anthracyclines) or/and hormonotherapy. We noted that most cancers with CD44?/CD24? and CD44?/CD24+ phenotype were ER positive. The majority of CD44?/CD24?, CD44?/CD24+ and CD44+/CD24? tumours were characterized by CK5/6 and EGFR negativity. In univariate analysis we demonstrated that patients with pN1/pN2 and with CD44 +/CD24- carcinomas had significantly lower risk of progression or cancer-related death than those with pN3 or tumours characterised by other CD44/CD24 expression patterns. We also found 100 % DFS in 12 patients with CD44+/CD24?/CK5/6+/ER? phenotype. Other analysed parameters were insignificant. We conclude that tumours with immunophenotypes: CD44+/CD24? and CD44+/CD24?/CK5/6+/ER? might be more sensitive for chemotherapy based on taxanes and/or anthracyclines.  相似文献   

17.

Background

The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization.

Methods and Findings

The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of 125I-radiolabeled CD44 antibody.

Conclusions

Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.  相似文献   

18.
Fascin, an actin-cross-linking protein, is up-regulated in breast cancer and correlates with a more aggressive disease. This study was conducted to elucidate the effects of manipulating fascin in breast cancer cells on the metastasis-associated events, including proliferation, adhesion, invasion, epithelial-mesenchymal transition (EMT) and enrichment of a CD44(+) /CD24(-) subpopulation that show some stem/progenitor cell properties. Western blot analysis of a panel of breast cancer cell lines revealed high expression of fascin in MDA-MB-435 and MDA-MB-231 cells but revealed no or low expression in MDA-MB-453, Her-18 and T47D. Gain-of-function and loss-of-function studies in breast cancer cells demonstrated that forced expression of fascin promoted cell proliferation assessed by the MTT assay, decreased cellular adhesion to fibronectin and potentiated the invasive capacity in the Transwell chamber invasion assay. Conversely, down-regulation of fascin via small interfering RNA increased cell adhesion and facilitated cell proliferation and invasion. In addition, fascin participated in the EMT and modulated the proportion of the CD44(+) /CD24(-) subpopulation in breast cancer cells. In conclusion, our data highlight an important role for fascin in breast cancer progression in vitro through orchestrating a variety of cellular events associated with metastasis, and thus, targeting this gene might have therapeutic implications.  相似文献   

19.
Breast cancers contain a heterogeneous population of cells with a small percentage that possess properties similar to those found in stem cells. One of the widely accepted markers of breast cancer stem cells (BCSCs) is the cell surface marker CD44. As a glycoprotein, CD44 is involved in many cellular processes including cell adhesion, migration and proliferation, making it pro-oncogenic by nature. CD44 expression is highly up-regulated in BCSCs, and has been implicated in tumorigenesis and metastasis. However, the genetic mechanism that leads to a high level of CD44 expression in breast cancer cells and BCSCs is not well understood. Here, we identify a novel cis-element of the CD44 directs gene expression in breast cancer cells in a cell type specific manner. We have further identified key trans-acting factor binding sites and nuclear factors AP-1 and NFκB that are involved in the regulation of cell-specific CD44 expression. These findings provide new insight into the complex regulatory mechanism of CD44 expression, which may help identify more effective therapeutic targets against the breast cancer stem cells and metastatic tumors.  相似文献   

20.
CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号