首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soroka M 《Zoological science》2005,22(10):1137-1144
The alien Chinese mussel Anodonta woodiana was first reported in Poland in the system of heated lakes near Konin in 1993. Genetic studies with use of three molecular techniques (isoenzyme electrophoresis, PCR-RFLP and sequence analysis of a COI gene fragment) were carried out on the Polish first populations of A. woodiana. The studies have revealed low genetic variation between the populations (Nei's genetic distance for 12 loci ranged 0.000 to 0.007) as well as their considerable polymorphism. Each population averaged 2.28 alleles per locus, 2.72 alleles per polymorphic locus, and 75% polymorphic loci. Restriction analysis of the COI gene fragment have not revealed variability between the analysed specimens, including males and females. Restriction enzymes, ScrFI, Csp6I, and EcoRI used in the COI gene fragment PCR-RFLP generate distinct restriction patterns, which can be molecular markers for A. woodiana. The sequence obtained for COI fragment was the same in the examined female and male specimens and represents F mitotype (DNA was isolated from somatic tissues). The divergence between A. woodiana F and M mitotypes is high (34%), however it remains within the range of the general character of the DUI (doubly uniparental inheritance) phenomenon in freshwater bivalves (Unionidae).  相似文献   

2.
The genus Encarsia F?rster includes parasitoid species that are effective natural enemies of whitefly and armoured scale insect agricultural pests. Within this genus, several species groups have been recognized on the basis of morphological similarity, although their monophyly appears uncertain. It is often difficult to separate morphologically similar species, and there is evidence that some species could in fact be complexes of cryptic species. Their correct identification is fundamental for biological control purposes. Recently, due to unreliability of morphological characters, molecular techniques have been investigated to identify markers that differentiate closely related species. In this study, DNA variation in an approximately 900 bp segment of the mitochondrial cytochrome oxidase subunit I (COI) gene was examined by both sequencing and PCR-RFLP. Two pairs of species that are difficult to distinguish morphologically were analysed: Encarsia formosa Gahan and Encarsialuteola Howard, belonging to the luteola group, and two populations of Encarsiasophia (Girault & Dodd) from Pakistan and Spain, belonging to the strenua group, recently characterized as cryptic species. High sequence divergence and species-specific restriction patterns clearly differentiate both species pairs. Parsimony analysis of the nucleotide sequences was also performed, including Encarsiahispida De Santis (luteola group) and Encarsia protransvena Viggiani (strenua group). Two monophyletic clades supporting the two groups of species considered were resolved. The results of this study support the use of the COI gene as a useful marker in separating species of Encarsia, for which morphological differences are subtle. Moreover, the COI gene appears potentially useful for understanding phylogenetic relationships in this genus.  相似文献   

3.
DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.  相似文献   

4.
Chironomids are excellent biological indicators for the health of aquatic ecosystems, but their use at finer taxonomic levels is hindered by morphological similarity of species at each life stage. Molecular markers have the potential to overcome these problems by facilitating species identification particularly in large-scale surveys. In this study, the potential of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach was tested to rapidly distinguish among chironomids within a geographic area, by considering chironomid species from Melbourne, Australia. By comparing molecular markers with diagnostic morphological traits, RFLP profiles of the cytochrome oxidase I (COI) region were identified that were specific to genera and some common species. These profiles were used to develop an RFLP-based key, which was validated by testing the markers on samples from several wetlands and streams. As well as allowing for rapid identification of species that are difficult to separate on morphological grounds, this approach also has the potential to resolve current taxonomic ambiguities.  相似文献   

5.
The genus Jesogammarus contains 16 species in two subgenera, Jesogammarus and Annanogammarus. To examine relationships among species in the genus, a molecular phylogenetic study including eight species of the former subgenus and four of the latter was conducted using partial DNA sequences of the mitochondrial COI and 12S rRNA genes. MP, NJ, and ML trees based on the combined COI and 12S data indicated monophyly of the subgenus Annanogammarus, though the monophyly of Jesogammarus was left unresolved. Consistent with few morphological differences, Jesogammarus (A.) naritai and J. (A.) suwaensis showed low genetic differentiation and did not show reciprocal monophyly, which suggests a close affinity of these taxa.  相似文献   

6.
Production of sweetpotatoes, Ipomoea batatas (L.) Lam. (Convolvulaceae), is limited by several insect pests, including Diabrotica spp. (Coleoptera: Chrysomelidae), and new integrated pest management (IPM) techniques for this crop are needed. Host plant resistance is one attractive approach that fits well into IPM programs. A host plant resistance research program typically depends on reliable bioassay procedures to streamline evaluation of germplasm. Thus, a bioassay technique was developed for evaluating sweetpotato germplasm by using adults of the banded cucumber beetle, Diabrotica balteata LeConte, and spotted cucumber beetle, Diabrotica undecimpunctata howardi Barber. A single beetle was placed on a piece of sweetpotato peel (periderm and cortex with stele removed) that was embedded periderm-side up in plaster in a petri dish. Feeding and longevity of insects on 30 sweetpotato genotypes were evaluated in two experiments by using this procedure. Adult longevity ranged from 7 to 11 d for starved individuals to 211 d for beetles fed a dry artificial diet. Longevity of banded cucumber beetles that fed on sweetpotato peels ranged from 12 d for the most-resistant genotype to 123 d for SC1149-19, a susceptible control cultivar. Longevity of spotted cucumber beetles was slightly shorter than longevity of banded cucumber beetles. For the most resistant sweetpotato genotypes, both Diabrotica species exhibited a significant delay in initiation of feeding, and more beetles died on these genotypes before they had fed. Both antibiosis and nonpreference (antixenosis) are important mechanisms of resistance in sweetpotato genotypes. This bioassay was consistent with field results, indicating that this technique could be useful for evaluating resistance to Diabrotica spp. in sweetpotato genotypes.  相似文献   

7.
We evaluated whether cytochrome c oxidase subunit I (COI) barcodes that have been previously suggested for birds are useful for identifying species of the genus Larus, which are resident or migratory birds in Korea. We found 31 intra- or interspecific COI haplotypes from 12 of 13 Larus species in Korea. Haplotype analyses showed that the COI barcodes could not distinguish some interspecific haplotypes from 6 of 12 Larus species because there were no nucleotide substitutions among their COI haplotypes. The neighbor-joining tree formed shallow branches in the clades expected for L. saundersi, L. crassirostris, L. canus, L relictus, and L. ridbundus. In the nine Larus species, COI haplotypes were not grouped as distinct entities that were correctly assigned to their corresponding species, resulting in polytypic clades. These results indicate that the COI sequences need to be cautiously selected as a DNA barcode for identifying species of Korean Larus birds.  相似文献   

8.
We describe a new method for the sex determination of tissue originating from Oryctolagus cuniculus (European rabbit), Lepus europaeus (European brown hare) and Lepus timidus (mountain hare) based on PCR-RFLP analysis of point mutations that differentiate the ZFX and ZFY gene sequences. Among several applications, this PCR-RFLP method could be used to investigate gender ratio and evaluate the population dynamics of these species using samples collected when sex cannot be identified.  相似文献   

9.
【目的】本研究旨在探讨DNA条形码对中国蛛缘蝽科(半翅目:缘蝽总科)物种界定的适用性。【方法】对中国蛛缘蝽科13属23种207个样本的线粒体COI基因DNA条形码序列进行扩增,并扩增稻缘蝽属Leptocorisa 3个物种的31条内转录间隔区1(ITS-1)序列作为辅助标记。使用MEGA 11软件计算种间和种内遗传距离(Kimura 2-parameter, K2P);采用邻接法(neighbor-joining, NJ)进行物种聚类分析;利用中介邻接网络算法构建单倍型网络图。【结果】基于线粒体COI DNA条形码序列得出测试的中国蛛缘蝽科所有23个种的种内平均K2P距离在2%以下,种间K2P距离在0.98%~23.98%之间(平均17.50%)。多数物种彼此能够被较好地分开,且支持率较高。其中,中稻缘蝽Leptocorisa chinensis和大稻缘蝽L. oratoria共享部分COI单倍型,造成COI条形码无法区分二者,可通过ITS-1序列在单倍型网络分析中将二者区分。【结论】本研究得出的中国蛛缘蝽科中绝大部分物种的DNA条形码数据分析结果与基于形态特征的分类单元一致。然而,对于其中亲缘关系极近的物种,单靠线粒体数据尤其是COI条形码序列无法进行准确界定,需引入其他DNA序列或其他类型数据进行区分。  相似文献   

10.
Identification of the juveniles of economically important thrips species on imports by morphology alone can be challenging and culturing is usually required. In the case of EU quarantine species such as Thrips palmi, rapid and accurate identification is essential. DNA barcoding using the Cytochrome oxidase I (COI) gene has become a popular technique for species identification; however, in some invertebrate genera COI has been shown to provide insufficient variability for species discrimination. This study presents a comparison of five different loci to investigate their ability to discriminate a small number of Thrips species. All five loci discriminated the species by neighbour-joining tree and varying degrees of discrimination were determined upon further investigation of the intraspecific and interspecific distances. Two distinct COI clades were observed for T. Palmi and judged to be COI haplotypes when data from the other four additional loci and geographical collection data were taken into consideration. COI was shown to provide sufficient variation to be used in future DNA barcoding efforts within the genus Thrips.  相似文献   

11.
We genetically characterized the prospective South American egg parasitoid candidate, Gonatocerus tuberculifemur, of the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, for a neoclassical biological control program in California. Two molecular methods, inter-simple sequence repeat-polymerase chain reaction DNA fingerprinting and a phylogeographic approach inferred from the mitochondrial cytochrome oxidase subunit I gene (COI), were utilized. Five geographic populations from South America were analyzed; in addition, a phylogenetic analysis was performed with several named and one unnamed Gonatocerus species using the COI gene. DNA fingerprinting demonstrated a fixed geographic banding pattern difference in the population from San Rafael, Mendoza Province, Argentina. The COI analysis uncovered haplotype or geographic structure in G. tuberculifemur. A neighbour-joining distance (NJ) and a single most parsimonious tree (MP) clustered the populations into two well-supported distinct clades with strong bootstrap values (97-99% and 92-99%, respectively) with populations from San Rafael clustering into clade 2 and the rest of the populations clustering into clade 1. No haplotype sharing was observed between individuals from the two clades. Phylogenetic analyses performed by NJ and MP methods with 15 Gonatocerus species confirmed species boundaries and again uncovered two distinct clades in G. tuberculifemur with strong bootstrap support (95-100% and 68-100%, respectively). However, the NJ tree supported the morphologically defined relationships better than the MP tree. The molecular evidence in the present study is suggestive of a species level divergence. Because G. tuberculifemur is under consideration as a potential biological control agent for GWSS in California, understanding cryptic variation in this species is critical.  相似文献   

12.
13.
We tested the efficiency of cytochrome oxidase I (COI)‐barcoding as a taxonomic tool to discriminate and identify sympatric shrew species on Mount Nimba (Guinea). We identified 148 specimens at the species level using morphological characters and comparison with type specimens, including several taxa from Mount Nimba. We identified ten morphospecies and tested aspects of genetic diversity and monophyly using genetic data from three mitochondrial (16S, cytochrome b, and COI) and one nuclear marker (the breast cancer gene, BRCA). Nine morphospecies were validated under the phylogenetic and genetic species concepts, including the recently diverged species Crocidura buettikoferi, Crocidura theresae, and Crocidura grandiceps. Under the same concepts, our analyses revealed the presence of two cryptic species amongst animals identified as Crocidura muricauda. We then tested the efficiency of barcoding thanks to commonly used phenetic methods, with the 148 specimens representing 11 potentially valid species based on morphological and molecular data. We show that COI‐barcoding is a powerful tool for shrew identification and can be used for taxonomic surveys. The comparison of genetic divergence values shows the presence of a barcoding gap (i.e. difference between the highest intraspecific and the lowest interspecific genetic divergence values). Given that only a few COI sequences are available for Afrotropical shrews, our work is an important step forward toward their enrichment. We also tested the efficiency of the three other sequenced markers and found that cytochrome b is as efficient as COI for barcoding shrews. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 672–687.  相似文献   

14.
《Journal of Asia》2021,24(3):918-924
Among Korean bumblebees, Bombus ignitus and B. ardens are relatively abundant and important for pollination of wildflowers and agricultural crops. Although the males are easily distinguishable phenotypically, the female castes are difficult to identify from each other. Here we evaluated the value of some morphometric characters in species identification. Also, we developed a polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) to discriminate these similar species. In spite of statistically significant differences of some morphological characters between two species, overlapping quantitative traits hindered accurate identification of the species. However, using 435 bp of COI gene and AluI, BspHI and Earl restriction enzymes allowed molecular identifications of these two species with unique profiles from the digestion by these restriction enzymes. This method can also be applied for older specimens with some morphological characters damaged. We also developed species-specific primers for fast and cost-effective identification of these species.  相似文献   

15.
The Persian Gulf and Oman Sea constitute one of the most important marine ecosystems and have many economically important aquatic species, including several coleoid cephalopods. Some coleoids are difficult to identify using traditional morphological characteristics. In this study, two mitochondrial fragments, cytochrome oxidase I (COI) and the large ribosomal subunit (16S rRNA), were used for identification of coleoid species in four regions in the northern Persian Gulf and Oman Sea. The study led to the identification of potential cryptic species of Sepia, Amphioctopus and Uroteuthis. Furthermore, Euprymna hyllebergi was reported for the first time from the Persian Gulf. A high diversity of Coeloidea was found in the study area. Mean intraspecific and interspecific nucleotide distances for COI were 0%–2% and 2%–7%, respectively, while these values for 16S rRNA sequences were 0%–1% and 1%–4%. Given the uncertainty about species identity and the high levels of intraspecific genetic diversity reported for some species in GenBank, a comprehensive global study will be needed to resolve the taxonomic status of several coleoid species.  相似文献   

16.
A phylogeny was reconstructed for four species belonging to the Neotropical Anopheles (Nyssorhynchus) albitarsis complex using partial sequences from the mitochondrial cytochrome oxidase I (COI) and NADH dehydrogenase 4 (ND4) genes and the ribosomal DNA ITS2 and D2 expansion region of the 28S subunit. The basis for initial characterization of each member of the complex was by correlated random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers. Analyses were carried out with and without an outgroup (An.(Nys.) argyritarsis Robineau-Desvoidy) by using maximum parsimony, maximum likelihood, and Bayesian methods. A total evidence approach without the outgroup, using separate models for "fast" (COI and ND4 position 3) and "slow" (rDNA ITS2 and D2, and COI and ND4 position 1) partitions, gave the best supported topology, showing close relationships of An. albitarsis Lynch-Arribálzaga to An. albitarsis B and An. marajoara Galv?o & Damasceno to An. deaneorum Rosa-Freitas. Analyses with the outgroup included showed poorer support, possibly because of a long branch attraction effect caused by a divergent outgroup, which caused one of the An. marajoara specimens to cluster with An. deaneorum in some analyses. The relationship of the above-mentioned result to a separately proposed hypothesis suggesting a fifth species in the complex is discussed.  相似文献   

17.
Identification of adult fruit flies primarily involves microscopic examination of diagnostic morphological characters, while immature stages, such as larvae, can be more problematic. One of the Australia’s most serious horticultural pests, the Queensland Fruit Fly (Bactrocera tryoni: Tephritidae), is of particular biosecurity/quarantine concern as the immature life stages occur within food produce and can be difficult to identify using morphological characteristics. DNA barcoding of the mitochondrial Cytochrome Oxidase I (COI) gene could be employed to increase the accuracy of fruit fly species identifications. In our study, we tested the utility of standard DNA barcoding techniques and found them to be problematic for Queensland Fruit Flies, which (i) possess a nuclear copy (a numt pseudogene) of the barcoding region of COI that can be co‐amplified; and (ii) as in previous COI phylogenetic analyses closely related B. tryoni complex species appear polyphyletic. We found that the presence of a large deletion in the numt copy of COI allowed an alternative primer to be designed to only amplify the mitochondrial COI locus in tephritid fruit flies. Comparisons of alternative commonly utilized mitochondrial genes, Cytochrome Oxidase II and Cytochrome b, revealed a similar level of variation to COI; however, COI is the most informative for DNA barcoding, given the large number of sequences from other tephritid fruit fly species available for comparison. Adopting DNA barcoding for the identification of problematic fly specimens provides a powerful tool to distinguish serious quarantine fruit fly pests (Tephritidae) from endemic fly species of lesser concern.  相似文献   

18.
程海云  段家充  张超  潘昭 《昆虫学报》2022,65(9):1204-1221
【目的】应用线粒体COI和核CAD基因片段探讨自动条形码间隔探索(automatic barcode gapdiscovery, ABGD)、广义混合Yule溯祖模型(generalized mixed Yule coalescent, GMYC)、贝叶斯泊松树进程(Bayesian Poisson tree processes, bPTP)和贝叶斯系统发育和系统地理分析(Bayesianphylogenetics and phylogeography, BPP) 4种分析方法在芫菁科(Meloidae)昆虫分子物种界定中的适用性。【方法】分别基于COI, CAD和COI+CAD串联序列数据集,应用ABGD, GMYC, bPTP和BPP 4种方法对中国北方芫菁科常见的6属(沟芫菁属Hycleus、斑芫菁属Mylabris、豆芫菁属Epicauta、绿芫菁属Lytta、星芫菁属Megatrachelus和短翅芫菁属Meloe)18个形态种进行分子物种界定,并与形态学鉴定结果进行比较。【结果】利用COI+CAD串联序列数据集所得物种界定结果与形态鉴定结果一致;COI数据集使用ABGD和GMYC方法的界定结果与形态鉴定结果一致,而bPTP划分的物种数较形态鉴定结果多;基于CAD序列在3种单基因物种界定方法的结果中,除GMYC与形态划分一致外,其余均显示部分结果与形态划分不同。【结论】在芫菁科分子物种界定中,多基因联合序列、多种界定方法分析所得结果优于单一基因片段和界定方法的分析结果。本研究的结果为芫菁科昆虫的分子物种界定和整合分类提供了数据支持和参考。  相似文献   

19.
A combination of single-strand conformation polymorphism analysis (SSCP) and sequencing were used to survey cytochrome oxidase I (COI) mitochondrial DNA (mtDNA) diversity among New Zealand ovoviviparous Onychophora. Most of the sites and individuals had previously been analysed using allozyme electrophoresis. A total of 157 peripatus collected at 54 sites throughout New Zealand were screened yielding 62 different haplotypes. Comparison of 540-bp COI sequences from Peripatoides revealed mean among-clade genetic distances of up to 11. 4% using Kimura 2-parameter (K2P) analysis or 17.5% using general time-reversible (GTR + I + Gamma) analysis. Phylogenetic analysis revealed eight well-supported clades that were consistent with the allozyme analysis. Five of the six cryptic peripatus species distinguished by allozymes were confirmed by mtDNA analysis. The sixth taxon appeared to be paraphyletic, but genetic and geographical evidence suggested recent speciation. Two additional taxa were evident from the mtDNA data but neither occurred within the areas surveyed using allozymes. Among the peripatus surveyed with both mtDNA and allozymes, only one clear instance of recent introgression was evident, even though several taxa occurred in sympatry. This suggests well-developed mate recognition despite minimal morphological variation and low overall genetic diversity.  相似文献   

20.
利用种特异性COI引物(SS-COI)鉴别扶桑绵粉蚧   总被引:1,自引:0,他引:1  
扶桑绵粉蚧Phenacoccus solenopsis Tinsley是我国近年新发现的一种严重威胁农林业生产的重要外来入侵害虫。针对扶桑绵粉蚧与其他粉蚧类昆虫难以准确快速识别且适生区广泛的问题, 以扶桑绵粉蚧为靶标, 以我国常见的其他7种粉蚧为参照, 采用基于线粒体DNA细胞色素C氧化酶亚基Ⅰ (mtDNA COI) 基因序列的种特异性(species-specific COI, SS-COI) PCR方法, 研究其快速分子检测技术。通过已知粉蚧的COI基因序列设计通用型引物1对, 获得扶桑绵粉蚧及其他7种粉蚧包括康氏粉蚧Pseudococcus comstocki Kuwana、 南洋臀纹粉蚧Planococcus lilacius Cockerell、 木槿曼粉蚧Maconellicoccus hirsutus (Green)、 甘蔗红粉蚧Saccharicoccus sacchari (Cockerell)、 新菠萝灰粉蚧Dysmicoccus neobrevipes Beardsley、 番石榴粉蚧Planococcus minor Maskel和石蒜绵粉蚧Phenacoccus solani Ferris的COI基因序列, 根据测序结果及数据库中已知粉蚧的COI基因序列设计SS COI引物1对(PSZTF1/PSZTR1), 其扩增片段大小为546 bp。种特异性检验结果表明, 该引物只对扶桑绵粉蚧的COI基因具有扩增能力, 对其他7种粉蚧不具有扩增效果; 该引物不仅对成虫具有良好的扩增能力, 对不同虫态的扶桑绵粉蚧以及来自我国不同省市的14个地理种群和口岸截获的来自巴基斯坦的扶桑绵粉蚧亦具有同样的扩增效能。这些结果表明, 该技术体系完全可用于扶桑绵粉蚧的准确识别及其检测监测, 对有效阻截其进一步扩张蔓延意义重大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号