首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural integrity of the hepatitus C virus (HCV) 5′ UTR region that includes the internal ribosome entry site (IRES) element is known to be essential for efficient protein synthesis. The functional explanation for this observation has been provided by the recent evidence that binding of several cellular factors to the HCV IRES is dependent on the conservation of its secondary structure. In order to better define the relationship between IRES activity, protein binding and RNA folding of the HCV IRES, we have focused our attention on its major stem–loop region (domain III) and the binding of several cellular factors: two subunits of eukaryotic initiation factor eIF3 and ribosomal protein S9. Our results show that binding of eIF3 p170 and p116/p110 subunits is dependent on the ability of the domain III apical stem–loop region to fold in the correct secondary structure whilst secondary structure of hairpin IIId is important for the binding of S9 ribosomal protein. In addition, we show that binding of S9 ribosomal protein also depends on the disposition of domain III on the HCV 5′ UTR, indicating the presence of necessary interdomain interactions required for the binding of this protein (thus providing the first direct evidence that tertiary folding of the HCV RNA does affect protein binding).  相似文献   

2.
The hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) in its 5′ untranslated region, the structure of which is essential for viral protein translation. The IRES includes a predicted pseudoknot interaction near the AUG start codon, but the results of previous studies of its structure have been conflicting. Using mutational analysis coupled with activity and functional assays, we verified the importance of pseudoknot base pairings for IRES-mediated translation and, using 35 mutants, conducted a comprehensive study of the structural tolerance and functional contributions of the pseudoknot. Ribosomal toeprinting experiments show that the entirety of the pseudoknot element positions the initiation codon in the mRNA binding cleft of the 40S ribosomal subunit. Optimal spacing between the pseudoknot and the start site AUG resembles that between the Shine–Dalgarno sequence and the initiation codon in bacterial mRNAs. Finally, we validated the HCV IRES pseudoknot as a potential drug target using antisense 2′-OMe oligonucleotides.  相似文献   

3.
The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops.  相似文献   

4.
The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.  相似文献   

5.
Ray PS  Das S 《Nucleic acids research》2004,32(5):1678-1687
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5′-untranslated region (5′-UTR). We have investigated whether small RNA molecules corresponding to the different stem–loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5′-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5′-UTR to specifically block viral RNA translation.  相似文献   

6.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

7.
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5′ UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3′ UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3′ end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3′ end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA–RNA interaction between the 5′ and 3′ ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5′–3′ end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.  相似文献   

8.
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5′untranslated region (5′UTR) and structured sequence elements within the 3′UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5′cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3′UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5′UTR and 3′UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5′cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5′UTR and HCV 3′UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5′UTR and/or HCV 3′UTR, recruits eIF3 and enhances HCV IRES-mediated translation.  相似文献   

9.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA)-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts) 277–343. Based on their antiviral activity, we mapped a druggable region (nts 313–343) where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5′ or 3′ direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.  相似文献   

10.
The 5′ untranslated region of hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) element, composed of domains II–IV, which is required for cap-independent translation initiation. Little information on the 3D structure of the whole functional HCV IRES is still available. Here, we use atomic force microscopy to visualize the HCV IRES conformation in its natural sequence context, which includes the upstream domain I and the essential, downstream domains V and VI. The 574 nt-long molecule analyzed underwent an unexpected, Mg2+-induced switch between two alternative conformations: from ‘open’, elongated morphologies at 0–2 mM Mg2+ concentration to a ‘closed’, comma-shaped conformation at 4–6 mM Mg2+. This sharp transition, confirmed by gel-shift analysis and partial RNase T1 cleavage, was hindered by the microRNA miR-122. The comma-shaped IRES-574 molecules visualized at 4–6 mM Mg2+ in the absence of miR-122 showed two arms. Our data support that the first arm would contain domain III, while the second one would be composed of domains (I–II)+(V–VI) thanks to a long-range RNA interaction between the I-II spacer and the basal region of domain VI. This reinforces the previously described structural continuity between the HCV IRES and its flanking domains I, V and VI.  相似文献   

11.
Translation initiation of hepatitis C virus (HCV) RNA occurs by internal entry of a ribosome into the 5′ nontranslated region in a cap-independent manner. The HCV RNA sequence from about nucleotide 40 up to the N terminus of the coding sequence of the core protein is required for efficient internal initiation of translation, though the precise border of the HCV internal ribosomal entry site (IRES) has yet to be determined. Several cellular proteins have been proposed to direct HCV IRES-dependent translation by binding to the HCV IRES. Here we report on a novel cellular protein that specifically interacts with the 3′ border of the HCV IRES in the core-coding sequence. This protein with an apparent molecular mass of 68 kDa turned out to be heterogeneous nuclear ribonucleoprotein L (hnRNP L). The binding of hnRNP L to the HCV IRES correlates with the translational efficiencies of corresponding mRNAs. This finding suggests that hnRNP L may play an important role in the translation of HCV mRNA through the IRES element.  相似文献   

12.
Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing.  相似文献   

13.
Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.  相似文献   

14.
Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES–40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES–RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA–protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES–RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S–3′ UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES–RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.  相似文献   

15.
Hepatitis C virus (HCV) RNA is recognized and cleaved in vitro by RNase P enzyme near the AUG start codon. Because RNase P identifies transfer RNA (tRNA) precursors, it has been proposed that HCV RNA adopts structural similarities to tRNA. Here, we present experimental evidence of RNase P sensitivity conservation in natural RNA variant sequences, including a mutant sequence (A368–G) selected in vitro because it presented changes in the RNA structure of the relevant motif. The variation did not abrogate the original RNase P cleavage, but instead, it allowed a second cleavage at least 10 times more efficient, 4 nt downstream from the original one. The minimal RNA fragment that confers sensitivity to human RNase P enzyme was located between positions 299 and 408 (110 nt). Therefore, most of the tRNA-like domain resides within the viral internal ribosome entry site (IRES) element. In the variant, in which the mutation stabilizes a 4 nt stem–loop, the second cleavage required a shorter (60 nt) substrate, internal to the minimal fragment substrate, conforming a second tRNA-like structure with similarities to a ‘Russian-doll’ toy. This new structure did not impair IRES activity, albeit slightly reduced the efficiency of translation both in vitro and in transfected cells. Conservation of the original tRNA-like conformation together with preservation of IRES activity points to an essential role for this motif. This conservation is compatible with the presence of RNA structures with different complexity around the AUG start codon within a single viral population (quasispecies).  相似文献   

16.
Surface plasmon resonance was used to investigate two previously described interactions analyzed by reverse genetics and complementation mutation experiments, involving 5BSL3.2, a stem–loop located in the NS5B coding region of HCV. 5BSL3.2 was immobilized on a sensor chip by streptavidin-biotin coupling, and its interaction either with the SL2 stem–loop of the 3′ end or with an upstream sequence centered on nucleotide 9110 (referred to as Seq9110) was monitored in real-time. In contrast with previous results obtained by NMR assays with the same short RNA sequences that we used or SHAPE analysis with longer RNAs, we demonstrate that recognition between 5BSL3.2 and SL2 can occur in solution through a kissing-loop interaction. We show that recognition between Seq9110 and the internal loop of 5BSL3.2 does not prevent binding of SL2 on the apical loop of 5BSL3.2 and does not influence the rate constants of the SL2-5BSL3.2 complex. Therefore, the two binding sites of 5BSL3.2, the apical and internal loops, are structurally independent and both interactions can coexist. We finally show that the stem–loop SL2 is a highly dynamic RNA motif that fluctuates between at least two conformations: One is able to hybridize with 5BSL3.2 through loop–loop interaction, and the other one is capable of self-associating in the absence of protein, reinforcing the hypothesis of SL2 being a dimerization sequence. This result suggests also that the conformational dynamics of SL2 could play a crucial role for controlling the destiny of the genomic RNA.  相似文献   

17.
Maize heat shock protein of 101 KDa (HSP101) is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5′UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5′UTR sequence (150 nts), since deletion of 17 nucleotides from the 5′ end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5′ end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.  相似文献   

18.
Using an in vitro system we have recently shown that the 3′ ends of human pre-snRNAs synthesized by RNA polymerase II are produced by RNA processing directed by the snRNA gene-specific 3′ box. Towards a complete characterization of this processing reaction we have further investigated the in vitro requirements for proper 3′ end formation of pre-U1 snRNA. Here we show that the 5′ cap plays a stimulatory role and processing requires creatine phosphate. Our results also indicate that the pre-U1 processing activity is heat sensitive and that an RNA component is required. In addition, the exact sequence adjacent to the 3′ box influences the position of the pre-U1 3′ end produced in vitro. Interestingly, the processing extract active for 3′-box-dependent processing also contains an activity that converts the 3′ end of RNA containing the U1 Sm protein binding site and the 3′ terminal stem–loop into the mature form.  相似文献   

19.
Hepatitis B virus (HBV) replication is initiated by HBV RT binding to the highly conserved encapsidation signal, epsilon, at the 5′ end of the RNA pregenome. Epsilon contains an apical stem–loop, whose residues are either totally conserved or show rare non-disruptive mutations. Here we present the structure of the apical stem–loop based on NOE, RDC and 1H chemical shift NMR data. The 1H chemical shifts proved to be crucial to define the loop conformation. The loop sequence 5′-CUGUGC-3′ folds into a UGU triloop with a CG closing base pair and a bulged out C and hence forms a pseudo-triloop, a proposed protein recognition motif. In the UGU loop conformations most consistent with experimental data, the guanine nucleobase is located on the minor groove face and the two uracil bases on the major groove face. The underlying helix is disrupted by a conserved non-paired U bulge. This U bulge adopts multiple conformations, with the nucleobase being located either in the major groove or partially intercalated in the helix from the minor groove side, and bends the helical stem. The pseudo-triloop motif, together with the U bulge, may represent important anchor points for the initial recognition of epsilon by the viral RT.  相似文献   

20.
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem–loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit''s decoding groove. This configuration depends on the sequence and structure of a different stem–loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号