首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiolabeled agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) and antagonist [125I]iodopindolol ([125I]IPIN) were used to investigate the properties of beta-adrenergic receptors on membranes prepared from L6 myoblasts and S49 lymphoma cells. The high affinity binding of (-)-[3H]HBI to membranes prepared from L6 myoblasts was stereoselectively inhibited by the active isomers of isoproterenol and propranolol. The density of receptors determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. The binding of (-)-[3H]HBI was inhibited by guanine nucleotides, suggesting an agonist-mediated association of the receptor with a guanine nucleotide-binding protein, presumably the stimulatory guanine nucleotide-binding protein (Ns) of adenylate cyclase. Results obtained in studies with membranes prepared from wild-type S49 lymphoma cells and the adenylate cyclase-deficient variant (cyc-) were similar to those obtained in experiments carried out with membranes prepared from L6 myoblasts. Thus, the high affinity binding of (-)-[3H]HBI to membranes prepared from wild-type and cyc- S49 lymphoma cells was stereoselectively inhibited by the active isomers of isoproterenol and propranolol, and was inhibited by GTP. Moreover, the density of sites determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. These results suggest either that cyc- cells contain a partially functional Ns, or alternatively, that the inhibitory guanine nucleotide-binding protein (Ni) is capable of interacting with beta-adrenergic receptors.  相似文献   

2.
The mechanism by which Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases, regulate the activity of the catalytic component (C) of adenylyl cyclase was investigated using cyc-S49 cell membranes which contain a functional inhibitory regulatory protein (Ni) but not the active subunit of the stimulatory regulatory protein (Ns). To this end, purified Ns protein was preactivated (Ns) in solution with guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and Mg2+, and then added to cyc- membranes under conditions where Ni was either unactivated or activated (Ni) by GTP gamma S and Mg2+. Activation of Ni in cyc- membranes resulted in a lowered expression of Ns activity under all conditions tested. Upon dilution of the reactants (Ns and cyc- membranes) the reconstituted activity declined in proportion to the dilution with an approximate t 1/2 of 30-45 min, being unaffected by activation of Ni. Postactivation of Ni after reconstitution of cyc- membranes with Ns resulted in a time-dependent decline in Ns activity to a level that was the same as that obtained when Ns was added to cyc- membranes with preactivated Ni. These data indicated that the effects of Ns on C are of a reversible type. The following indicated that Ns and Ni affect C activity in a noncompetitive manner: (a) the per cent reduction in Ns activity due to activation of Ni was constant and independent of the concentration of Ns, (b) double reciprocal plots of activities reconstituted in control and Ni-containing cyc- membranes versus Ns concentration were linear with an unaltered apparent Km for Ns, and (c) the onset of inhibition of C prereconstituted with Ns was much faster (approximate t 1/2 = 2-5 min) than expected if it were due to occupancy of a common site on C left vacant by Ns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
Fat cells from the hypothyroid rat fail to synthesize cyclic AMP in response to beta-adrenergic agonists, although possessing normal amounts of beta-adrenergic receptors (R) and catalytic adenylate cyclase activity. Membranes of hypothyroid rat fat cells contain Mr = 42,000 (major form), 46,0000, and 48,000 (minor forms) peptides of the stimulatory guanine nucleotide-binding regulatory component (Ns) radiolabeled in the presence of cholera toxin and [32P]NAD+. Maps of fragments generated by partial proteolysis of these radiolabeled peptides are virtually identical in hypothyroid and euthyroid preparations. Two-dimensional gel electrophoresis showed that the size and charge of the Mr = 42,000, 46,000, and 48,000 radiolabeled peptides are similar in euthyroid and hypothyroid rat fat cell membranes. Extracts of hypothyroid rat fat cell membranes express normal amounts of Ns activity as measured by their ability to reconstitute the adenylate cyclase of membranes of S49 mouse lymphoma cyc- mutant cells which lack functional Ns activity. Hybridization of hypothyroid rat fat cells with donor membranes of normal rat fat cells, rat hepatocytes, or S49 cyc- cells restores the beta-adrenergic response of these fat cells. Pretreating the donor membranes with a beta-adrenergic antagonist covalent label blocks the ability of these membranes to restore the response of the cells. Rat hepatocytes pretreated with a beta-adrenergic antagonist covalent label do not accumulate cyclic AMP in response to isoproterenol. Hybridization of these receptor-deficient hepatocytes with fat cell ghosts of euthyroid rats restores beta-adrenergic stimulation of cyclic AMP accumulation, whereas hybridization with fat cell ghosts of hypothyroid rat does not restore this response. Ns of pigeon erythrocyte membranes radiolabeled with cholera toxin and [32P]NAD+, extracted in cholate, and reconstituted with fat cell membranes interacts with fat cell R. The ability of R to interact with Ns of pigeon erythrocyte membranes is impaired when the reconstitution is performed with membranes from the hypothyroid rat fat cell. Hypothyroidism appears to affect the ability of R to interact productively with Ns, without affecting either R number or Ns structure and function.  相似文献   

5.
Brief (approximately 20-min) exposure of S49 lymphoma cells to beta-agonists such as isoproterenol leads to a homologous form of desensitization in which beta-agonist but not prostaglandin E1-sensitive or NaF-sensitive adenylate cyclase is reduced. The desensitized receptors (R) appear to be sequestered away from the effector system (guanine nucleotide regulatory protein (Ns) and adenylate cyclase (C)). Membrane perturbants such as polyethylene glycol are known to reorient membrane proteins and lipids. Thus, we fused agonist-desensitized S49 lymphoma cells to each other, using polyethylene glycol as fusogen, in an attempt to functionally reunite the R, N, and C components which might have become sequestered in microdomains of the plasma membrane during desensitization. Such treatment completely restored isoproterenol-stimulated adenylate cyclase to normal and re-established the ability of R and N to functionally couple as assessed by the ability to form a high affinity, guanine nucleotide-sensitive state of the receptor. These results support the concept that agonist-promoted sequestration plays a functionally significant role in the homologous desensitization of the beta-adrenergic receptor.  相似文献   

6.
cyc- S49 cell membranes contain an adenylyl cyclase activity which is stimulated by forskolin and inhibited by guanine nucleotides and NaF. These inhibitory effects are mediated by an inhibitory guanine nucleotide-binding regulatory component (Ni) affecting the adenylyl cyclase catalytic unit (Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Nature (Lond.) 302, 706-709). Since cyc- S49 cells do not contain a stimulatory guanine nucleotide-binding regulatory component (Ns), these membranes were used to study the requirements and kinetics of activation of Ni in the absence of Ns. Activation of Ni by guanyl-5'-yl imidodiphosphate was time-dependent (i.e. hysteretic) and pseudo-irreversible. Although GTP and guanosine 5'-(beta-thio)diphosphate could prevent the inhibition caused by guanyl-5'-yl imidodiphosphate if added simultaneously with it, they could not reverse the inhibited state induced by previous exposure to guanyl-5'-yl imidodiphosphate. Activation of Ni had an absolute requirement for Mg2+. Unlike the activation of Ns, however, which requires millimolar concentrations of Mg2+ in the absence of hormonal stimulation, activation of Ni requires only micromolar concentrations of the divalent cation. These results support the contention that hormones which activate Ni or Ns do so by altering different parameters of a similar activation mechanism.  相似文献   

7.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

8.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

9.
Virtually all known biological actions stimulated by beta-adrenergic and other adenylate cyclase coupled receptors are mediated by cAMP-dependent protein kinase. Nonetheless, "homologous" or beta-adrenergic agonist-specific desensitization does not require cAMP. Since beta-adrenergic receptor phosphorylation may be involved in desensitization, we studied agonist-promoted receptor phosphorylation during homologous desensitization in wild-type S49 lymphoma cells (WT) and two mutants defective in the cAMP-dependent pathway of beta-agonist-stimulated protein phosphorylation (cyc- cannot generate cAMP in response to beta-adrenergic agonists; kin- lacks cAMP-dependent kinase). All three cell types demonstrate rapid, beta-adrenergic agonist-promoted, stoichiometric phosphorylation of the receptor which is clearly not cAMP mediated. The amino acid residue phosphorylated is solely serine. These data demonstrate, for the first time, that catecholamines can promote phosphorylation of a cellular protein (the beta-adrenergic receptor) via a cAMP-independent pathway. Moreover, the ability of cells with mutations in the adenylate cyclase-cAMP-dependent protein kinase pathway to both homologously desensitize and phosphorylate the beta-adrenergic receptors provides very strong support for the notion that receptor phosphorylation may indeed be central to the molecular mechanism of desensitization.  相似文献   

10.
Treatment with low physiological concentrations of epinephrine (5-50 nM) rapidly desensitizes beta-adrenergic stimulation of cAMP formation in S49 wild-type (WT) lymphoma cells. Previous attempts to detect this early phase of desensitization in cell-free assays of adenylate cyclase (EC 4.6.1.1) after intact cell treatment were unsuccessful. We have now found that reducing the Mg2+ concentrations in the adenylate cyclase assays to less than 1.0 mM unmasked this rapid phase of desensitization of the WT cells, and that high Mg2+ concentrations (5-10 mM) largely obscured the desensitization. Submillimolar Mg2+ conditions also revealed a two- to threefold decrease in the affinity of epinephrine binding to the beta-adrenergic receptor after desensitization with 20 nM epinephrine. Detection of 4 beta-phorbol 12-myristate 13-acetate (PMA) desensitization of the WT beta-adrenergic receptor was also dependent on low Mg2+ as measured either by the decrease in epinephrine stimulation of adenylate cyclase or by the reduction in the affinity of epinephrine binding. Unexpectedly, when cyc- cells were pretreated with 50 nM epinephrine, the beta-adrenergic stimulation of reconstituted adenylate cyclase was not desensitized. The characteristics of the Mg2+ effect on epinephrine- and PMA-induced desensitizations suggest a similar mechanism of action with the most likely events being phosphorylations of the beta-adrenergic receptors. Our data indicate that cAMP-dependent protein kinase (EC 2.7.1.37) may play a role in the desensitization caused by low epinephrine concentrations inasmuch as this phase of desensitization did not occur in the cyc-. For the PMA-induced desensitization, the phosphorylation may be mediated by protein kinase C (EC 2.7.1.37).  相似文献   

11.
Exposure of rat glioma C6 cells to either isoproterenol or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in desensitization of isoproterenol-stimulated adenylate cyclase activity. After either treatment, the affinity of beta-receptors for isoproterenol was reduced. Thus, desensitization by TPA or isoproterenol appeared to involve an "uncoupling" of the beta-receptor from the stimulatory regulatory component (Ns) of adenylate cyclase. The activity of Ns, assayed by reconstitution of S49 cyc- adenylate cyclase activity, was found to be unchanged after desensitization. The activity of beta-receptors was measured by inactivating Ns and the catalytic component of adenylate cyclase in C6 membranes and fusing them with membranes lacking beta-receptors. Receptors from isoproterenol-treated C6 cells were less active in "coupling" to the foreign adenylate cyclase than receptors from untreated cells, whereas receptors from TPA-treated cells were fully active. This unexpected latter result was explored further. Lysates from C6 cells were centrifuged on linear sucrose density gradients and the gradient fractions assayed for beta-receptor binding activity. Most of the receptors were recovered in a "heavy" plasma membrane peak but some receptors also appeared in a "light" membrane peak. After treatment of the cells with isoproterenol or TPA, the proportion of receptors in the light peak increased. Prior treatment of the cells with concanavalin A prevented the increase in light receptors caused by isoproterenol or TPA. In addition, the concanavalin A treatment prevented the desensitization of adenylate cyclase caused by TPA but not that caused by isoproterenol. Finally, desensitization of adenylate cyclase was reversed by polyethylene glycol-induced fusion of membranes from cells treated with TPA but not isoproterenol. We conclude that beta-agonists and phorbol esters desensitize adenylate cyclase by distinct mechanisms. Agonists cause a reduction in the functional activity of the beta-receptors followed by a segregation of the receptors into a light membrane fraction devoid of Ns. Phorbol esters do not alter the activity of the receptors but do cause their segregation.  相似文献   

12.
Growth of S49 lymphoma cells with horse serum leads to an increase in cellular cAMP phosphodiesterase activity and a resultant loss of hormone- and cholera-toxin-stimulated cAMP accumulation. We now show that the serum requires protein synthesis to produce these effects. Further, we show that acute addition of serum to wild-type S49 cells, grown in serum-free medium, rapidly (under 2 min) and transiently (under 30 min) stimulates cellular cAMP, 10-fold over basal levels. This 'acute' effect of serum was not observed in UNC S49 cells, suggesting that a functional Ns, the guanine nucleotide regulatory component that mediates stimulation of adenylate cyclase, is required for the serum-mediated stimulation of cellular cAMP. Serum added acutely to wild-type S49 cells also augmented cAMP accumulation in response to isoproterenol and forskolin. The half-maximally effective concentrations of horse serum that acutely stimulated or more slowly decreased the cAMP accumulation were approx. 0.2% and 2.0%, respectively. Preliminary attempts to characterize further the serum factor indicate that it has a high (250 000-300 000) molecular weight and is insensitive to boiling; chromatography on Sepharose CL-6B yields a 100-fold purification. Thus, the serum contains one or more components that activate adenylate cyclase, increase cellular cAMP levels and ultimately induce cAMP phosphodiesterase in S49 lymphoma cells.  相似文献   

13.
S Bauer  K H Jakobs 《FEBS letters》1986,198(1):43-46
Treatment of intact human platelets and S49 lymphoma cyc- cells with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate, impairs GTP-dependent and hormone-induced inhibition of adenylate cyclase, an action mediated by the inhibitory coupling protein Ni. In contrast, receptor-independent activation of Ni with subsequent adenylate cyclase inhibition induced by the stable GTP analog, guanosine 5'-[gamma-thio]triphosphate, was affected in neither the potency nor onset of Ni activation by the stable GTP analog, in both membrane systems studied. The data indicate that modification of Ni following phorbol ester treatment does not impair its activation by stable GTP analogs.  相似文献   

14.
High-resolution two-dimensional gel electrophoresis of proteins labeled with either 32Pi or [35S]methionine was used to study interactions between cyclic AMP and tetradecanoyl phorbol acetate (TPA) at the level of intracellular protein phosphorylation. Cultured S49 mouse lymphoma cells were used as a model system, and mutant sublines lacking either the catalytic subunit of cyclic AMP-dependent protein kinase or the guanyl nucleotide-binding "Ns" factor of adenylate cyclase provided tools to probe mechanisms underlying the interactions observed. Three sets of phosphoproteins responded differently to TPA treatment of wild-type and mutant cells: Phosphorylations shown previously to be responsive to activation of intracellular cyclic AMP-dependent protein kinase were stimulated by TPA in wild-type cells but not in mutant cells, a subset of phosphorylations stimulated strongly by TPA in mutant cells was inhibited in wild-type cells, and two novel phosphoprotein species appeared in response to TPA only in wild-type cells. The latter two classes of TPA-mediated responses specific to wild-type cells could be evoked in adenylate cyclase-deficient cells by treating concomitantly with TPA and either forskolin or an analog of cyclic AMP. Three conclusions are drawn from our results: 1) TPA stimulates adenylate cyclase in wild-type cells causing increased phosphorylation of endogenous substrates by cyclic AMP-dependent protein kinase, 2) activated cyclic AMP-dependent protein kinase inhibits phosphorylation (or enhances dephosphorylation) of a specific subset of TPA-dependent phosphoproteins, and 3) cyclic AMP-dependent events facilitate TPA-dependent phosphorylation of some substrate proteins.  相似文献   

15.
125I-Glucagon binding to rat liver plasma membranes was composed of high- and low-affinity components. N-Ethylmaleimide (NEM) and several other alkylating agents induced a dose-dependent loss of high-affinity sites. This diminished the apparent affinity of glucagon receptors for hormone without decreasing the binding capacity of membranes. Solubilized hormone-receptor complexes were fractionated as high molecular weight (Kav = 0.16) and low molecular weight (Kav = 0.46) species by gel filtration chromatography; NEM or guanosine 5'-triphosphate (GTP) diminished the fraction of high molecular weight complexes, suggesting that NEM uncouples glucagon receptor-N-protein complexes. Exposure of intact hepatocytes to the impermeable alkylating reagent p-(chloromercuri)benzenesulfonic acid failed to diminish the affinity of glucagon receptors on subsequently isolated plasma membranes, indicating that the thiol that affects receptor affinity is on the cytoplasmic side of the membrane. Hormone binding to plasma membranes was altered by NEM even after receptors were uncoupled from N proteins by GTP. These data suggest that a sensitive thiol group that affects hormone binding resides in the glucagon receptor, which may be a transmembrane protein. Alkylated membranes were fused with wild-type or cyc- S49 lymphoma cells to determine how alkylation affects the various components of the glucagon-adenylyl cyclase system. Stimulation of adenylyl cyclase with fluoride, guanylyl 5'-imidodiphosphate, glucagon, or isoproterenol was observed after fusion of cyc- S49 cells [which lack the stimulatory, guanine nucleotide binding, regulatory protein of adenylyl cyclase (Ns)] with liver membranes alkylated with 1.5 mM NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
L Journot  J Bockaert  Y Audigier 《FEBS letters》1989,251(1-2):230-236
After ADP-ribosylation by cholera toxin which promotes dissociation of the subunits, the alpha-subunit of Gs (Gs alpha) remained strongly associated with plasma membranes of wild-type S49 cells, since its interaction with the membrane was insensitive to 1 M KCl. Its association with the membrane was partially disrupted by 6 M urea and totally abolished by treatment with alkali at pH greater than or equal to 11.5. In vitro translated Gs alpha could interact with plasma membranes from the cyc- mutant of S49 cells as revealed by its cosedimentation with the membrane fraction and incubation of reconstituted membranes with GTP gamma S did not alter anchorage of Gs alpha. The characteristics of the association of in vitro translated Gs alpha with cyc- membranes after GTP gamma S treatment, i.e. sensitivity to 1 M KCl, 6 M urea and alkali treatment, were very similar to those described for the ADP-ribosylated form in wild-type membranes. Restoration of the coupling between the adrenergic receptor and adenylate cyclase further confirmed the vectorial reconstitution of cyc- membranes by in vitro translated alpha-subunit of Gs.  相似文献   

17.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

18.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

19.
Antisera were raised against the retinal guanine-nucleotide-binding protein (N-protein), transducin, purified from bovine rod outer segments. Sera obtained after repeated injections of antigen recognized all transducin subunits (alpha, beta and gamma). One antiserum, tested for cross-reactivity with non-retinal N-proteins, was found to cross-react with the beta subunits of the ubiquitously occurring N-proteins, Ns and Ni, but not with their respective alpha and gamma subunits. The antiserum also cross-reacted with the beta subunit of the recently identified N-protein, No, which has been found in high abundance in the central nervous system. These data support the similarity of the beta subunits of the N-proteins identified so far. Purification of N-proteins from porcine cerebral cortex without the use of activating ligands yielded fractions containing the isolated alpha subunit of No, free beta gamma complex, Ni, No and fractions containing both N-proteins in various proportions. The purity of the preparations was at least 80% as judged by Coomassie-blue-stained SDS gels. No pure Ns was obtained. Use of the transducin antibody during the course of the purification revealed that the beta subunits coeluted from a gel filtration column largely with the alpha subunits of Ni and No but were hardly detectable in fractions that were able to reconstitute Ns activity into membranes of an Ns-deficient cell line (S49 cyc- lymphoma cells). This indicates that in the central nervous system the concentrations of Ni and No are of magnitudes higher than that of Ns. Two-dimensional gel electrophoresis of N-proteins, purified from porcine cerebral cortex, resulted in the resolution of two major peptides in the 35-kDa region, which differed in their pI values and were identified as beta subunits by the use of the antiserum. Identical results were achieved using crude cholate extracts from membranes of the same tissue instead of purified proteins. The occurrence of different beta subunits may be explained by posttranslational N-protein modification.  相似文献   

20.
We have localized a G protein activator region of the human beta 2-adrenergic receptor to region beta III-2 (from Arg259 to Lys273). The synthetic beta III-2, corresponding to the C-terminal end of the third cytoplasmic loop, activates Gs at nanomolar concentrations and weakly activates Gi. beta III-2 activates adenylyl cyclase at nanomolar concentrations in wild-type S49 lymphoma membranes, but not in membranes of unc mutant S49 cells, in which Gs is uncoupled from beta-adrenergic stimulation. Phosphorylation of beta III-2 by cAMP-dependent protein kinase A, which is involved in the desensitization of the beta-adrenergic receptor from Gs, drastically reduces the effect of beta III-2 on Gs while potentiating its action on Gi, resulting in a total loss of adenylyl cyclase-stimulating activity. These findings indicate that this receptor sequence is a multipotential G protein activator whose G protein specificity is regulated by protein kinase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号