首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The histone N-terminal tails have been shown previously to be important for chromatin assembly, remodeling, and stability. We have tested the ability of human SWI-SNF (hSWI-SNF) to remodel nucleosomes whose tails have been cleaved through a limited trypsin digestion. We show that hSWI-SNF is able to remodel tailless mononucleosomes and nucleosomal arrays, although hSWI-SNF remodeling of tailless nucleosomes is less effective than remodeling of nucleosomes with tails. Analogous to previous observations with tailed nucleosomal templates, we show both (i) that hSWI-SNF-remodeled trypsinized mononucleosomes and arrays are stable for 30 min in the remodeled conformation after removal of ATP and (ii) that the remodeled tailless mononucleosome can be isolated on a nondenaturing acrylamide gel as a novel species. Thus, nucleosome remodeling by hSWI-SNF can occur via interactions with a tailless nucleosome core.  相似文献   

2.
3.
4.
Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.  相似文献   

5.
6.
ISWI chromatin remodelers mobilize nucleosomes to control DNA accessibility. Complexes isolated to date pair one of six regulatory subunits with one of two highly similar ATPases. However, we find that each endogenously expressed ATPase co‐purifies with every regulatory subunit, substantially increasing the diversity of ISWI complexes, and we additionally identify BAZ2B as a novel, seventh regulatory subunit. Through reconstitution of catalytically active human ISWI complexes, we demonstrate that the new interactions described here are stable and direct. Finally, we profile the nucleosome remodeling functions of the now expanded family of ISWI chromatin remodelers. By revealing the combinatorial nature of ISWI complexes, we provide a basis for better understanding ISWI function in normal settings and disease.  相似文献   

7.
8.
9.
10.
The ATPase ISWI is a subunit of several distinct nucleosome remodeling complexes that increase the accessibility of DNA in chromatin. We found that the isolated ISWI protein itself was able to carry out nucleosome remodeling, nucleosome rearrangement, and chromatin assembly reactions. The ATPase activity of ISWI was stimulated by nucleosomes but not by free DNA or free histones, indicating that ISWI recognizes a specific structural feature of nucleosomes. Nucleosome remodeling, therefore, does not require a functional interaction between ISWI and the other subunits of ISWI complexes. The role of proteins associated with ISWI may be to regulate the activity of the remodeling engine or to define the physiological context within which a nucleosome remodeling reaction occurs.  相似文献   

11.
The mammalian Tip49a and Tip49b proteins belong to an evolutionarily conserved family of AAA+ ATPases. In Saccharomyces cerevisiae, orthologs of Tip49a and Tip49b, called Rvb1 and Rvb2, respectively, are subunits of two distinct ATP-dependent chromatin remodeling complexes, SWR1 and INO80. We recently demonstrated that the mammalian Tip49a and Tip49b proteins are integral subunits of a chromatin remodeling complex bearing striking similarities to the S. cerevisiae SWR1 complex (Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 13665-13670). In this report, we identify a new mammalian Tip49a- and Tip49b-containing ATP-dependent chromatin remodeling complex, which includes orthologs of 8 of the 15 subunits of the S. cerevisiae INO80 chromatin remodeling complex as well as at least five additional subunits unique to the human INO80 (hINO80) complex. Finally, we demonstrate that, similar to the yeast INO80 complex, the hINO80 complex exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding.  相似文献   

12.
SWI-SNF alters DNA-histone interactions within a nucleosome in an ATP-dependent manner. These alterations cause changes in the topology of a closed circular nucleosomal array that persist after removal of ATP from the reaction. We demonstrate here that a remodeled closed circular array will revert toward its original topology when ATP is removed, indicating that the remodeled array has a higher energy than that of the starting state. However, reversion occurs with a half-life measured in hours, implying a high energy barrier between the remodeled and standard states. The addition of competitor DNA accelerates reversion of the remodeled array by more than 10-fold, and we interpret this result to mean that binding of human SWI-SNF (hSWI-SNF), even in the absence of ATP hydrolysis, stabilizes the remodeled state. In addition, we also show that SWI-SNF is able to remodel a closed circular array in the absence of topoisomerase I, demonstrating that hSWI-SNF can induce topological changes even when conditions are highly energetically unfavorable. We conclude that the remodeled state is less stable than the standard state but that the remodeled state is kinetically trapped by the high activation energy barrier separating it from the unremodeled conformation.  相似文献   

13.
Proton-ATPase complexes from yeast and rat liver mitochondria were isolated by a simple method previously employed for the purification of the proton-ATPase complex from chloroplasts. After reconstitution into liposomes, the purified complexes were active in the ATP-Pi exchange reaction, the rate of which was 120 and at least 200 nmol/mg of protein/min for the rat liver and yeast mitochondria ATPases, respectively. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, each complex exhibited 11 to 12 different polypeptides. The isolated ATPase complexes from rat liver and yeast mitochondria, from Swiss chard chloroplasts, and Escherichia coli membranes were reacted with antibodies prepared against the various subunits of ATPase complexes. From all the combinations of antigen-antibody examined, only the antibodies against beta subunit cross-reacted with the corresponding subunit of all the ATPase complexes tested. These results indicate that certain amino acid sequences in the beta subunit have been preserved in all of the proton-ATPase complexes.  相似文献   

14.
E. coli ClpX, a member of the Clp/Hsp100 family of ATPases, remodels multicomponent complexes and facilitates ATP-dependent degradation. Here, we analyze the mechanism by which ClpX destabilizes the exceedingly stable Mu transpososome, a natural substrate for remodeling rather than degradation. We find that ClpX has the capacity to globally unfold transposase monomers, the building blocks of the transpososome. A biochemical probe for protein unfolding reveals that ClpX also unfolds MuA subunits during remodeling reactions, but that not all subunits have their structure extensively modified. In fact, direct recognition and unfolding of a single transposase subunit are sufficient for ClpX to destabilize the entire transpososome. Thus, the ability of ClpX to unfold proteins is sufficient to explain its role in both complex destabilization and ATP-dependent proteolysis.  相似文献   

15.
Bacterial type III secretion drives flagellar biosynthesis and mediates bacterial-eukaryotic interactions. Type III secretion is driven by an ATPase that is homologous to the catalytic subunits of proton-translocating ATPases, such as the F(o)F(1) ATPase. Here we use PSI-BLAST searches to show that some noncalatytic components are also conserved between type III secretion systems and proton-translocating ATPases. In particular, we show that the FliH/YscL-like proteins and the E subunits of vacuolar ATPases represent fusions of domains homologous to second-stalk components of the F(o)F(1) ATPase (the b and delta subunits).  相似文献   

16.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

17.
The 20S proteasome functions in protein degradation in eukaryotes together with the 19S ATPases or in archaea with the homologous PAN ATPase complex. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X motif (HbYX). We show that these residues are essential for PAN to associate with the 20S and open its gated channel for substrate entry. Upon ATP binding, these C-terminal residues bind to pockets between the 20S's alpha subunits. Seven-residue or longer peptides from PAN's C terminus containing the HbYX motif also bind to these sites and induce gate opening in the 20S. Gate opening could be induced by C-terminal peptides from the 19S ATPase subunits, Rpt2, and Rpt5, but not by ones from PA28/26, which lack the HbYX motif and cause gate opening by distinct mechanisms. C-terminal residues in the 19S ATPases were also shown to be critical for gating and stability of 26S proteasomes. Thus, the C termini of the proteasomal ATPases function like a "key in a lock" to induce gate opening and allow substrate entry.  相似文献   

18.
19.
20.
SWI-SNF is an ATP-dependent chromatin remodeling complex required for expression of a number of yeast genes. Previous studies have suggested that SWI-SNF action may remove or rearrange the histone H2A-H2B dimers or induce a novel alteration in the histone octamer. Here, we have directly tested these and other models by quantifying the remodeling activity of SWI-SNF on arrays of (H3-H4)(2) tetramers, on nucleosomal arrays reconstituted with disulfide-linked histone H3, and on arrays reconstituted with histone H3 derivatives site-specifically modified at residue 110 with the fluorescent probe acetylethylenediamine-(1,5)-naphthol sulfonate. We find that SWI-SNF can remodel (H3-H4)(2) tetramers, although tetramers are poor substrates for SWI-SNF remodeling compared with nucleosomal arrays. SWI-SNF can also remodel nucleosomal arrays that harbor disulfide-linked (H3-H4)(2) tetramers, indicating that SWI-SNF action does not involve an obligatory disruption of the tetramer. Finally, we find that although the fluorescence emission intensity of acetylethylenediamine-(1,5)-naphthol sulfonate-modified histone H3 is sensitive to octamer structure, SWI-SNF action does not alter fluorescence emission intensity. These data suggest that perturbation of the histone octamer is not a requirement or a consequence of ATP-dependent nucleosome remodeling by SWI-SNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号