首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of resources within habitats affects species abundance, richness and composition, but the role of resource distribution in species interactions is rarely studied. In ant communities, changes in resource distribution within habitats may influence behavioral interactions because many ant species are specialized to efficiently harvest a subset of available resources. This study investigates whether interactions between the behaviorally dominant host ant Pheidole diversipilosa and its specialist parasitoid (Phoridae: Apocephalus orthocladus) depend on resource size distribution around the colony. Using in situ foraging arenas to manipulate parasitoid abundance and resource size distribution around colonies, we tested whether variation in resource size distribution allows P. diversipilosa to alter its foraging behavior in ways that lessen the impact of parasitoid attack. P. diversipilosa colonies do not lower the impact of parasitoid attack by increasing the number of workers foraging individually on small and widely dispersed resources. However, the presence of multiple large resources allows colonies to temporarily redistribute soldier ants from resources patrolled by parasitoids to other resources not patrolled by parasitoids, and to maintain soldier abundance at levels found in the absence of parasitoids. These results highlight the importance of placing behavioral interactions within the context of variation in resource distribution.  相似文献   

2.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

3.
Colonies of the seed-eating ant, Pogonomyrmex barbatus, compete with neighboring colonies for foraging areas. In a conflict over foraging area, what is at stake? This depends on how resources are distributed in time and space: if certain regions consistently provide particularly nutritious seed species, or especially abundant seeds, such regions will be of greater value to a colony. During the summer, seeds were taken from returning foragers in colonies located in 4 different vegetation types. There was no relation between the vegetation currently growing in the foraging area, and the species of seeds collected by ants. During the summer, ants collect mostly seeds produced in previous seasons and dispersed by wind and flooding. In 1991, colonies in all vegetation types collected mostly Bouteloua aristidoides; in 1992, Eriastrum diffusum and Plantago patagonica. There was no relation between colony density and numbers of seeds collected. Seed species collected by ants were compared in different colonies, and on different foraging trails within a colony. The results show that seed patches are distributed on the scale of distances between nests, not the smaller scale of different foraging trails of one colony. It appears that colonies are competing for any space in which to search for seeds, not competing for certain regions of consistently high value.  相似文献   

4.
1. Ants may select their food in response to nutritional needs of the colony and forage in a way that optimises a complementary nutrition. Even though resource availability is known to affect ant colony and individual health, there is still no study that has investigated the plastic preferences of ants according to spatial resource availability in naturally heterogeneous conditions. 2. Beaches are great biomes to test spatial foraging preference because a complete absence of nectaries can be found. Dorymyrmex nigra Pergande 1896 was found inhabiting a beach in southeastern Brazil, in which nectar sources are heterogeneously distributed. This study tested whether the foraging preference to sugar baits depended on the availability of nectar sources surrounding the nests. 3. We found that more D. nigra workers foraged on sugar baits when the colonies lacked naturally occurring nectar in their vicinity compared with colonies with abundant nectar nearby. 4. These results show that the foraging preference of ants depends upon resource availability. This is the first study to use a natural mosaic of resource availability to show that resource preference of ants is plastic and varies spatially.  相似文献   

5.
Mismatches in nutrient composition (e.g., protein, carbohydrates, lipids, etc.) between consumers and the resources they depend on can have ecological consequences, affecting traits from individual behavior to community structure. In many terrestrial ecosystems, ants depend on plant and insect mutualist partners for carbohydrate‐rich rewards that are nutritionally unbalanced (especially in protein) relative to colony needs. Despite imbalances, many carbohydrate‐feeding ant mutualists dominate communities—both competitively and numerically—raising the question of whether excess carbohydrates ‘fuel’ colony acquisition of limiting resources and growth. In a 10‐month field study, we manipulated carbohydrate access for the obligate plant‐ant Crematogaster nigriceps to test whether carbohydrate availability could be mechanistically linked to ecological dominance via heightened territory defense, increased protein foraging, and colony growth. Supplementation increased aggressive defense of hosts after only two weeks, but was also strongly linked to variation in rainfall. Contrary to predictions, we did not find that supplemented colonies increased protein foraging. Instead, colonies with reduced carbohydrate access discovered a greater proportion of protein baits, suggesting that carbohydrate deprivation increases foraging intensity. We found no significant effect of carbohydrate manipulation on brood or alate production. These results contrast with findings from several recent short‐term and lab‐based nutrient supplementation studies and highlight the role of seasonality and biotic context in colony‐foraging and reproductive decisions. These factors may be essential to understanding the consequences of carbohydrate access in natural plant‐ant systems.  相似文献   

6.
Summary We examined division of labor and colony demography in the antPonera pennsylvannica. Observation of three colonies with individually marked workers revealed a high degree of interindividual behavioral variation and a rough but consistent division of labor between brood tenders and foragers. This division was present both in colonies consisting entirely of workers produced in the previous summer and in colonies containing freshly eclosed ants. Two colonies showed typical age-based polyethism, with young ants focusing on brood care and overwintered ants on foraging. No such age basis was detected in the third colony. This difference may relate to variability in brood production schedules. Colonies showing temporal polyethism had two peaks of brood production and thus had relatively large brood populations when the first young workers eclosed, while the third colony had only one peak and little brood for the young workers to tend. Even if young ants have a lower threshold for brood care, it may have been concealed in the latter situation. Demographic data indicate that natural colonies produce one brood per year and that workers typically eclose into colonies with relatively low brood care demands. This suggests that overwintered workers do most of a colony's work and that the division of labor among overwintered ants is the more important one under natural conditions. The basis of this division is as yet unknown. These results also suggest that small colony size, univoltine brood schedule and a close association between foraging and brood care do not preclude division of labor among specialized castes, as has been suggested for another ponerine species (Traniello 1978).  相似文献   

7.
1. Patterns of aggression between ants from different nests influence colony and population structure. Several species of invasive ants lack colony boundaries over large expanses, forming ‘supercolonies’ with many nests among which workers can move without encountering aggression. 2. Bioassays of aggression were used to determine the colony structure of the invasive ant Myrmica rubra (L.) at eight sites in Massachusetts, the state where the species was first discovered in North America. To improve the ability to distinguish systematic patterns from background variability in aggressiveness, a repeated‐measures design was used and replicate assays for each pair of nests were conducted. 3. Aggressive responses showed that populations at all sites consisted of multiple distinct colonies. Patterns of aggression were repeatable and transitive, with few exceptions. Colonies were identified as clusters of nests whose workers showed little to no aggression towards one another but were aggressive towards conspecifics from more distant nests. 4. The degree of aggression varied considerably among different colony pairs but did not depend in any consistent way on the distance of separation or on whether colonies were neighbours. 5. Territories of neighbouring colonies abutted, indicating that they were restricted by intraspecific competition. Mapped territories ranged in size from 0.03 to 1.2 ha, but colonies at the study sites have not undergone the enormous expansions seen in introduced populations of some other species of invasive ants, and neighbouring colonies compete locally.  相似文献   

8.
Jason P. Harmon  D. A. Andow 《Oikos》2007,116(6):1030-1036
Density-dependent mutualisms have been well documented, but the behavioral mechanisms that can produce such interactions are not as well understood. We investigated interactions between predatory ladybirds and the ant Lasius neoniger, which engages in a facultative association with the aphid Aphis fabae . We found that ants disrupted predator aggregation and deterred foraging, but that this effect varied with aphid density. In the field, smaller aphid colonies had higher numbers of ants per aphid (higher relative ant density), whereas plants with larger aphid colonies had lower relative ant density. Ants deterred ladybird foraging when relative ant density was high, but when relative ant density was low, ladybirds aggregated to aphids and foraged more successfully. This difference in ladybird foraging success appeared to be driven by variation in the ants' distribution on the plant and the ladybirds' reaction to ants. When relative ant density was high, ants moved around the perimeter of the aphid colonies, which resulted in faster detection of predators and a greater likelihood of ladybirds leaving. However, when relative ant density was low, ants moved only in the midst of the aphid colonies and rarely around the perimeter, which allowed predators to approach the aphid colony from the perimeter and feed without detection. Such predators were less likely to leave the aphid colony when subsequently detected by ants. We suggest that differences in relative ant numbers, ant distribution, and predator reaction to detection by ants could lead to complex population-level consequences including density-dependent mutualisms and the possibility that predators act as prudent predators.  相似文献   

9.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

10.
Division of labour in Solenopsis invicta follows a familiar pattern: younger, smaller ants tend toward brood care while older, larger ants tend toward foraging. However, long-term observations of marked individuals reveal that length of nursing and foraging ‘careers’ and the age of transition between these activities vary considerably between and within size groups, and are related to length of life. Experiments with entire colonies show that larger ants are more likely than smaller ants to forage for insect prey. There are two main worker castes, ‘nurses’ and ‘foragers’, whose members span a wide age-size range, and a large ‘reserve’ subcaste, heterogeneous in age, size, and behaviour: reserves may nurse, forage, store liquid food, or relay food from nurses to foragers. The proportion of ants engaged in foraging decreases with colony size because many ants in large colonies are not exposed to recruitment signals.  相似文献   

11.
It was examined whether Formica polyctena and F. sanguinea ants from a mixed colony elicit higher levels of aggression of conspecific ants in comparison to ants from homospecific colonies. Individuals were confronted in an experimental arena and their behavior was recorded. It was found that F. polyctena workers behaved more aggressively toward ants from a mixed colony. This pattern, however, was not confirmed in F. sanguinea. Moreover, both species clearly discriminated between conspecific and allospecific ants from a mixed colony. It seems that as a result of social interactions both species exchanged cuticular hydrocarbons, which caused their recognition labels to adjust to some extent. Results of the present study support the idea that that F. sanguinea is able to form mixed colonies in which species-specific recognition cues are probably still retained.  相似文献   

12.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

13.
1. The size–distance relationship among honeydew‐collecting foragers of the red wood ant Formica rufa was investigated. Within the colony territory, the size (as measured by head width) and fresh weight of samples of foragers were determined for ants ascending and descending trees near, and farther from, the central nest mound. 2. The mean size of the ants was significantly higher at far trees than at near trees in six out of the seven colonies investigated, confirming the general presence of the size–distance relationship. 3. In three colonies, a load–distance relationship was also found. For a given head width, honeydew‐carrying ants descending far trees were significantly heavier than those descending near trees (i.e. they were carrying heavier loads from trees farther away from the central nest mound). 4. This is the first time that both load–distance and size–distance relationships have been reported in foraging workers from the same ant colony. 5. The combined effects of these characteristics suggest that colony foraging efficiency is enhanced by far trees being visited by the larger workers that then return with heavier loads of honeydew.  相似文献   

14.
Abstract.  1. Although interactions between ants and honeydew-producing insects have received considerable study, relatively little is known about how these interactions alter the behaviour of ants in ways that affect other arthropods. In this study, field and greenhouse experiments were performed that examined how the presence of aphids ( Aphis fabae solanella ) on Solanum nigrum influenced the foraging behaviour of Argentine ants ( Linepithema humile ) and, in turn, modified the extent to which ants deter larval lacewings ( Chrysoperla rufilabris ), which are known aphid predators.
2. A field experiment demonstrated that the level of foliar foraging by ants increased linearly with aphid abundance, whereas no relationship existed between the level of ground foraging by ants and aphid abundance.
3. In the greenhouse, as in the field, foliar foraging by ants greatly increased when aphids were present. Higher levels of foliar foraging led to a twofold increase in the likelihood that ants contacted aphid predators. As a result of these increased encounters with ants, lacewing larvae were twice as likely to be removed from plants with aphids compared with plants without aphids. Once contact was made, however, the behaviour of ants towards lacewing larvae appeared similar between the two experimental groups.
4. Argentine ants drive away or prey upon a diversity of arthropod predators and parasitoids, but they also exhibit aggression towards certain herbivores. Future work should attempt to quantify how the ecological effects that result from interactions between honeydew-producing insects and invasive ants, such as L. humile , differ from those that result from interactions between honeydew-producing insects and native ants.  相似文献   

15.
Subterranean termites provide a major potential food source for forest-dwelling ants, yet the interactions between ants and termites are seldom investigated largely due to the cryptic nature of both the predator and the prey. We used protein marking (rabbit immunoglobin protein, IgG) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to examine the trophic interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar). We marked the prey by feeding the termites paper treated with a solution of rabbit immunoglobin protein (IgG). Subsequently, we offered live, IgG-fed termites to ant colonies and monitored the intracolony distribution of IgG-marked prey. Laboratory experiments on the distribution of protein-marked termite prey in colonies of A. rudis revealed that all castes and developmental stages receive termite prey within 24 h. In field experiments, live, protein-marked termites were offered to foraging ants. Following predation, the marker was recovered from the ants, demonstrating that A. rudis preys on R. flavipes under field conditions. Our results provide a unique picture of the trophic-level interactions between predatory ants and subterranean termites. Furthermore, we show that protein markers are highly suitable to track trophic interactions between predators and prey, especially when observing elusive animals with cryptic food-web ecology. Received 19 January 2007; revised 23 March 2007; accepted 26 March 2007.  相似文献   

16.
Most social animals have mechanisms to distinguish group members from outsiders, in part to prevent the exploitation of resources reserved for members of the group. Nevertheless, specialized thieves of the Neotropical ant, Ectatomma ruidum, also known as the ‘thieving ant’, regularly enter and steal resources from distinct, neighboring colonies. Here, we examine the mechanisms and consequences of thievery in a population of E. ruidum. We show that (1) individuals from nearby colonies were accepted more often than those from farther colonies; (2) rejection rates decreased as individuals interacted more with non‐nestmates from the same source colony; and (3) colonies that were experimentally treated to reduce thievery rates had improved productivity. The boost in productivity with thievery reduction was greater in low density populations than in high density populations. We conclude that, as in other species, thievery has negative fitness costs to E. ruidum. However, greater acceptance of neighbors than non‐neighbors and increased acceptance after habituation to non‐nestmates suggest a proximate explanation for the presence of thievery. Moreover, lower fitness costs of thievery at high nesting density, combined with observations of extraordinarily high densities of E. ruidum throughout its range, suggest there is little selection pressure among these ants to guard against thieves, thus providing an ultimate explanation why thievery persists among litter‐foraging ants.  相似文献   

17.
In social insects, groups of workers perform various tasks such as brood care and foraging. Transitions in workers from one task to another are important in the organization and ecological success of colonies. Regulation of genetic pathways can lead to plasticity in social insect task behaviour. The colony organization of advanced eusocial insects evolved independently in ants, bees, and wasps and it is not known whether the genetic mechanisms that influence behavioural plasticity are conserved across species. Here we show that a gene associated with foraging behaviour is conserved across social insect species, but the expression patterns of this gene are not. We cloned the red harvester ant (Pogonomyrmex barbatus) ortholog (Pbfor) to foraging, one of few genes implicated in social organization, and found that foraging behaviour in harvester ants is associated with the expression of this gene; young (callow) worker brains have significantly higher levels of Pbfor mRNA than foragers. Levels of Pbfor mRNA in other worker task groups vary among harvester ant colonies. However, foragers always have the lowest expression levels compared to other task groups. The association between foraging behaviour and the foraging gene is conserved across social insects but ants and bees have an inverse relationship between foraging expression and behaviour.  相似文献   

18.
This study focuses on different factors affecting the level of aggression in the desert ant Cataglyphis fortis. We found that the readiness to fight against conspecific ants was high in ants captured close to the nest entrance (0- and 1-m distances). At a 5-m distance from the nest entrance the level of aggression was significantly lower. As the mean foraging range in desert ants by far exceeds this distance, the present account clearly shows that in C. fortis aggressive behavior is displayed in the context of nest, rather than food-territory defense. In addition, ants were more aggressive against members of a colony with which they had recently exchanged aggressive encounters than against members of a yet unknown colony. This finding is discussed in terms of a learned, enemy-specific label-template recognition process.  相似文献   

19.
Organization of foraging and information transmission in the ant Formica pratensis were studied using the “binary tree” maze. The ants were shown to use distant homing. They were able to memorize and transmit up to four bits of information. The foraging mode was shown to depend on the colony size: an increase in the number of ants was accompanied by switching from solitary to group foraging. A relay mode of information transfer (an ant relays the information to several others, etc.) was revealed. The organization of work and information flows in the colonies of Formica polyctena and F. pratensis were found to be essentially different. The communicative systems in dominant ant species are variable and species-specific.  相似文献   

20.
Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants'' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony''s organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants'' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号