首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entry and metabolism of 3H-cortisol in oocytes were investigated using isolated follicles of the tilapia (Oreochromis mossambicus) in order to examine the mechanisms of incorporation of maternal hormones into oocytes. The composition of 3H-labeled steroids in the oocyte was analyzed by high-performance liquid chromatography. A significant amount of cortisol was converted to cortisone and an unidentified molecule by the follicular layer. The contents of 3H-cortisol and 3H-cortisone in the oocyte reached an equilibrium level within 12 hr, whereas the content of the unidentified metabolite continued to increase for 36 hr. The total content of the incorporated cortisol and its metabolites was proportional to cortisol in the medium over the concentration range of 5 ng/ml to 5 microg/ml. The amounts of cortisone and the unidentified molecule increased proportionally when the concentration of cortisol in the medium was lower than 500 ng/ml, whereas they reached a plateau when the concentration of cortisol exceeded 500 ng/ml. Cortisol entry was reversible, because 90% of cortisol and cortisone in the oocyte was lost within 18 hr when the medium was changed to that without 3H-cortisol. On the other hand, 50% of the unidentified molecule was preserved at the end of the incubation. In conclusion, the entry of cortisol into the oocyte was considered to be nonspecific and due probably to simple diffusion. However, a considerable amount of cortisol (50-70%) was specifically converted to cortisone and another unidentified molecule during passage through the follicular layer.  相似文献   

2.
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.  相似文献   

3.
Cellular recruitment and degeneration of branchial mitochondrion-rich (MR) cells were examined in Mozambique tilapia transferred from hypoosmotic to hyperosmotic water. To examine apoptosis in the gills associated with salinity change, tilapia were directly transferred from freshwater to 70% seawater. The TUNEL assay showed that apoptotic cells in the gills were significantly increased at 1 day after transfer, which was supported by an electron-microscopic observation that gill MR cells underwent morphological changes characteristic of apoptosis such as an irregularly shaped electron-dense nucleus and distension of the tubular system. To further examine MR-cell recruitment, freshwater-acclimated tilapia were transferred either to freshwater or to 70% seawater after BrdU injection. Immunohistochemical detection of BrdU-labeled nuclei and Na(+)/K(+)-ATPase-rich MR cells allowed us to classify BrdU-labeled MR cells into two subtypes: a single MR cell and an MR-cell complex. Although newly generated single MR cells were observed similarly in both freshwater and 70% seawater-transferred fish, the density of MR-cell complexes was much higher in 70% seawater than in freshwater. Our findings indicated that transfer from hypoosmotic to hyperosmotic water enhanced apoptosis of freshwater-type MR cells, resulting in reduction in hyperosmoregulatory ability for freshwater adaptation, and stimulated the recruitment of MR-cell complexes to develop hypoosmoregulatory ability for seawater adaptation.  相似文献   

4.
Euryhaline tilapia larvae are capable of adapting to environmental salinity changes even when transferred from freshwater (FW) to seawater (SW) or vice versa. In this study, the water balance of developing tilapia larvae (Oreochromis mossambicus) adapted to FW or SW was compared, and the short-term regulation of drinking rate of the larvae during salinity adaptation was also examined. Following development, wet weight and water content of both SW- and FW-adapted larvae increased gradually, while the dry weight of both group larvae showed a slow but significant decline. On the other hand, the drinking rate of SW-adapted larvae was four- to ninefold higher than that of FW-adapted larvae from day 2 to day 5 after hatching. During acute salinity challenges, tilapia larvae reacted profoundly in drinking rate, that is, increased or decreased drinking rate within several hours while facing hypertonic or hypotonic challenges, to maintain their constancy of body fluid. This rapid regulation in water balance upon salinity challenges may be critical for the development and survival of developing larvae.  相似文献   

5.
Changes in expression of Na, K-ATPase (NKA) and morphometry of mitochondrion-rich (MR) cells in gills of tilapia were investigated on a 96-hr time course following transfer from seawater (SW) to fresh water (FW). A transient decline in plasma osmolality and Na+, Cl- concentrations occurred from 3 hrs onward. Gills responded to FW transfer by decreasing NKA activity as early as 3 hrs from transfer. This response was followed by a significant decrease in the NKA isoform alpha1-mRNA abundance, which was detected by real-time PCR at 6 hrs post transfer. Next, a decrease of alpha1-protein amounts were observed from 6 hrs until 24 hrs post transfer. Additionally, during the time course of FW transfer, modifications in number and size of subtypes of gill MR cells were observed although no significant difference was found in densities of all subtypes of MR cells. These modifications were found as early as 3 hrs, evident at 6 hrs (exhibition of 3 subtypes of MR cells), and mostly completed by 24 hrs post transfer. Such rapid responses (in 3 hrs) as concurrent changes in branchial NKA expression and modifications of MR cell subtypes are thought to improve the osmoregulatory capacity of tilapia in acclimation from hypertonic SW to hypotonic FW.  相似文献   

6.
The numbers of black, territorial, male tilapia in large tanks undergoes a clear diurnal cyclicity, with peak numbers seen in the afternoon. It is suggested that this cyclicity is functionally related to an observed spawning cyclicity.  相似文献   

7.
Summary The corpuscles of Stannius (CS) of the cichlid Oreochromis mossambicus (formerly Sarotherodon mossambicus) were studied in relation to sexual maturation and plasma calcium levels. After sexual maturation, the CS are enlarged in female fish, because of an increase in size and number of the type-1 cells. During the ovarian cycle, the size of the CS increases in parallel with the growth of the ovaries. Concurrently, plasma total calcium increases markedly until spawning. This increase is mainly accounted for by calcium bound to proteins (vitellogenins), but the ultrafiltrable calcium fraction is also slightly higher than in males. Ovariectomy is followed by a reduction in the size of the CS, mainly a result of involution of the type-1 cells, and by a reduction in plasma calcium to levels typical for males. Gonadectomy in males does not affect size or ultrastructure of the CS, or plasma calcium levels. Since the type-1 cells of the CS are the presumptive source of a hypocalcemic hormone, we conclude that activation of the CS during the female reproductive cycle is a response to elevated calcium levels that accompany ovarian maturation. We suggest that the CS respond in particular to the elevated ultrafiltrable or ionic calcium levels.  相似文献   

8.
9.
Summary Using an antiserum to highly purified chum salmon prolactin, prolactin cells were identified in the putative rostral pars distalis of newly hatched tilapia larvae (Oreochromis mossambicus) by the immunogold method for the electron microscope. In the putative rostral pars distalis, some cells had another kind of secretory granule which was much less numerous, much smaller in size, and without immunoreactivity to salmon prolactin antiserum. Controls incubated with salmon prolactin-preabsorbed antiserum or normal serum showed no immunoreactive cells, confirming the specificity of the antiserum. The possible role of prolactin in the osmoregulation of tilapia larvae is discussed.  相似文献   

10.
The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).  相似文献   

11.
Effects of exogenous cortisol on drinking rate and water content in developing larvae of tilapia (Oreochromis mossambicus) were examined. Both freshwater- and seawater-adapted larvae showed increases in drinking rates with development. Drinking rates of seawater-adapted larvae were about four- to ninefold higher than those of freshwater-adapted larvae from day 2 to day 5 after hatching. Seawater-adapted larvae showed declines in drinking rate and water content at 4 and 14 h, respectively, after immersion in 10 mg L(-1) cortisol. In the case of freshwater-adapted larvae, the drinking rate decreased after 8 h of cortisol immersion, while the water content did not show a significant change even after 32 h of cortisol immersion. In a subsequent experiment of transfer from freshwater to 20 ppt (parts per thousand, salinity) seawater, immersion in 10 mg L(-1) cortisol for 8-24 h enhanced the drinking rate in larvae at 4 h after transfer, but no significant difference was found in water contents between cortisol-treated and control groups following transfer. These results suggest that cortisol is involved in the regulation of drinking activity in developing tilapia larvae.  相似文献   

12.
13.
Ghrelin is an important endocrine peptide that links the gastrointestinal system and brain in the regulation of food intake and energy expenditure. In human, rat, and goldfish plasma levels of ghrelin and GH are elevated in fasted animals, suggesting that ghrelin is an orexigenic signal and a driving force behind the elevated plasma levels of GH during fasting. Ghrelin's orexigenic action is mediated by the ghrelin receptor (GHS-R1a and GHS-R1b) which is localized on neuropeptide Y (NPY) neurons in the brain. Studies were undertaken to investigate the effect of short-term fasting on plasma ghrelin and brain expression of GHS-R1a, GHS-R1b, and NPY in the tilapia. Fasting for 7 days had no effect on plasma ghrelin concentrations, whereas significant increases in plasma levels of GH were observed on day 3. Fasting significantly reduced plasma levels of IGF-I on days 3 and 7, and of glucose on days 3, 5, and 7. Brain expression of ghrelin and GHS-R1b were significantly elevated in fasted fish on day 3, but were significantly reduced on day 5. This reduction was likely due to a significant increase in the expression in the fed controls on day 5 compared to day 0. No change was detected in the expression of GHS-R1a or NPY in the brain. These results indicate that ghrelin is not acting as a hunger signal in short-term fasted tilapia and is not responsible for the elevated levels of plasma GH.  相似文献   

14.
Summary Ontogenetic changes of brain ganglioside concentration and composition have been followed in the teleost fishSarotherodon mossambicus Cichlidae) from the 1st day post hatching to the adult stage, in order to correlate these with findings in higher vertebrates. During the developmental period from hatching to the transition to free swimming, which comes along with maximum rate of synaptogenesis, a sharp rise in the brain ganglioside content occurs, which is mainly due to the trisialoganglioside GT1b. In the following phase of myelination (characterized in birds and mammals by an increase in GM1, GM1 and GM4) accretion of the novel and so far unidetified fraction (GM2) occurs, which is highly enriched in the brain stem. The results obtained are discussed with respect to gangliosides as useful biochemical markers for brain development and maturation in all vertebrates.  相似文献   

15.
Summary Although exposure to acid water (pH 3.5) induces severe and prolonged reduction in plasma osmolarity and total plasma calcium concentration in tilapia (Oreochromis mossambicus) and goldfish (Carassius auratus), the responses of the hypophyseal cells are clearly different. In tilapia, the size of the rostral pars distalis of the pituitary gland is enlarged as a result of the increase in size and number of prolactin cells. The pars intermedia PAS-positive (PIPAS) cells are not noticeably changed. Conversely, in goldfish, prolactin cells are unaffected, whereas the number of enlarged PIPAS cells increases markedly. Stimulation of prolactin secretion may be responsible for the partial restoration of plasma osmolarity and calcium levels observed in tilapia after two weeks exposure to acid water. Prolactin cells apparently play a role in the adaptation to acid stress by counteracting osmoregulatory disturbances. Goldfish show no restoration of plasma osmolarity during the course of the experiment. Plasma calcium levels tend to increase. Although prolactin may have an osmoregulatory function in goldfish under steady state conditions, goldfish prolactin cells do not seem to participate in the physiological adaptation to environmental changes that disturb water and ion homeostasis. The function of PIPAS cells in tilapia remains unclear and is apparently unconnected with ion regulation. The observations on these cells in goldfish are consistent with the hypercalcemic activity suggested for them.  相似文献   

16.
Zhou  Yi  Zhang  Xiaojin  Xu  Qian  Yan  Jinpeng  Yu  Fan  Xiao  Jun  Guo  Zhongbao  Luo  Yongju  Zhong  Huan 《Molecular biology reports》2019,46(1):425-432

Nonadditive expression contributes to heterosis in hybrids. In this study, the expression profiles of twelve lipid metabolism pathway-related genes were investigated in the intestine of Nile tilapia (Oreochromis niloticus) ♀?×?blue tilapia (Oreochromis aureus) ♂ hybrid. The expression of genes from the hybrid were assigned to nonadditive and additive expression pattern groups and compared with expression patterns from Nile tilapia and blue tilapia. In the intestine of the hybrid, apoA4B was expressed at intermediate levels, but apoB and MTP were assigned to ELD-B and ELD-N categories, respectively. The LPL and LRP1 showed transgressive up-regulation in the hybrid, but LDLR was assigned to the ELD-B category. For fatty acid uptake related genes, only FABP11a was categorized as nonadditive expression with transgressive up-regulation, while CD36 and FABP3 were categorized as additive expression in the intestine of the hybrid. Two genes in triacylglycerol metabolism, namely, FAS and DGAT2, showed transgressive up-regulation in the hybrid. Most of the genes analyzed in the present study showed nonadditive expression (8 in 12), and five genes showed transgressive up-regulation. These results indicated that the stimulation of lipid metabolism in the hybrid compared to that of its parents. The hyperactive expression of these genes in the hybrid may be associated with the growth and lipid usage vigor.

  相似文献   

17.
18.
Tilapia (Oreochromis mossambicus) have been implicated as the source of type C toxin in avian botulism outbreaks in pelicans (Pelecanus erythrorhynchos, Pelecanus occidentalis californicus) at the Salton Sea in southern California (USA). We collected sick, dead, and healthy fish from various sites throughout the Sea during the summers of 1999 through 2001 and tested them for the presence of Clostridium botulinum type C cells by polymerase chain reaction targeting the C(1) neurotoxin gene. Four of 96 (4%), 57 of 664 (9%), and five of 355 (1%) tilapia tested were positive for C. botulinum type C toxin gene in 1999, 2000, and 2001, respectively. The total number of positive fish was significantly greater in 2000 than in 2001 (P<0.0001). No difference in numbers of positives was detected between sick and dead fish compared with live fish. In 2000, no significant relationships were revealed among the variables studied, such as location and date of collection.  相似文献   

19.
Summary Branchial chloride cells, which actively take up ions in the gills of freshwater fish, were studied in tilapia (Oreochromis mossambicus) exposed to sublethally acidified freshwater. Structural damage of cells, resulting in cell death by necrosis, only occurred transiently, when the reduction of water pH was acute rather than gradual. The most prominent effects of water acidification were the rapid increase in the number of chloride cells and the changes in frequency of the different stages of the chloride cell cycle. In the opercular inner epithelium, a twofold increase in cells occurred 48 h after gradual acidification. Cell density stabilized after 4 weeks at a level 5 times that of control fish. Four transitory stages were distinguished in the chloride cell cycle: accessory or replacement cells, immature, mature, and degenerating (apoptotic) cells. In control fish, mature chloride cells dominated (over 50%) with immature and apoptotic cells totalling about 40%. After 4 weeks in acid water, only 13% of the cells were mature. Immature and apoptotic cells dominated, each representing about 40% of the total number of chloride cells. Mature cells apparently age rapidly under these conditions. Thus, chloride cells turn over quickly in acid water, with a minor increase in ion transport capacity of the gills. This conclusion is supported by the observation that opercular and branchial Na+/K+ ATPase activities in treated fish are only 40%–50% higher than in controls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号