首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SDS聚丙烯酰胺凝胶电泳快速染色新方法的研究   总被引:10,自引:0,他引:10  
通过几种金融盐溶液对SDS聚丙烯酰胺凝胶电泳染色的实验表明,0.25mol/L的CaCl2和MgCl2溶液能够对蛋白质进行有效的染色,经这2种溶液染色的蛋白质都能够从凝胶中洗脱回收。尤其是CaCl2法灵敏度更高,而且蛋白质条带形成之后也十分稳定,所以在运用制备电泳纯化蛋白质时这种新的染色方法较适用。  相似文献   

2.
We have developed a simple one-step 30-min method for fluorescent visualization of proteins in native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) gels. The method is based on formation of strong fluorophores via potassium ferricyanide-provoked oxidation of tryptophan (Trp). Following PAGE, gels are soaked in water solution of potassium ferricyanide (100 mM) and NaOH (1 M) and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method was slightly lower compared with standard Coomassie Brilliant Blue (CBB) staining. The method can be useful when rapid acquisition of data is of the essence. After preview, gels can be post-stained using the CBB protocol for further analysis. The intensity of fluorescence is dependent on Trp number, so the protocol might find application in the quantification of Trp residues as illustrated here. Importantly, there is room for improvement of the method. Namely, according to excitation–emission matrix analysis of stained protein bands, maximal fluorescence intensity (at 345/460 nm) was 3.5-fold higher compared with the settings that were available on a commercial imager (395/525 nm). As a supplement, we present an upgrade of the previously described method for in-gel detection of non-heme iron-binding proteins that also employs potassium ferricyanide.  相似文献   

3.
A new solid-phase protein nano-assay is suggested for simple and sensitive estimation of protein content in sample buffers (a 1-μl sample is sufficient for analysis). The assay is different from conventional “on-filter” assays in that it uses inexpensive fully transparent polyacrylamide gel (PAAG)-coated glass plates as solid support and, thus, combines the convenience of “on-membrane” staining with the sensitivity and ease of documentation of “in-gel” staining (and, therefore, is especially suited for standard lab gel documentation systems). The PAAG plates assay is compatible with all dyes for in-gel protein staining. Depending on the sensitivity of the staining protocol, the assay can be used in macro-, micro-, and nano-assay formats. We also describe a low-cost two-component colloidal Coomassie brilliant blue G-250 (CBB G-250) staining protocol for fast quantitative visualization of proteins spotted on a PAAG plate (the detection limit is up to 2 ng of proteins even when using a Nikon CoolPix digital camera and white light transilluminator instead of a gel scanner). The suggested colloidal CBB G-250 protocol could also be used for visualizing nano-amounts of proteins in polyacrylamide gels. The PAAG plate assay could be useful for proteomic applications and, in general, for all cases where a fast, sensitive, and easily documentable cost-effective solid-phase protein assay is required.  相似文献   

4.
Proteins in polyacrylamide gels can be rapidly visualized by soaking in trichloroacetic acid or chloroform followed by illumination with UV light. The UV-light-driven reaction of tryptophan in the presence of trichlorocompounds yields products that emit sufficiently in the visible region to identify the location of the protein bands on the gel. This method can be used to rapidly identify protein bands on a gel in less than 20 min. On thin polyacrylamide gels, 1.0 microg of protein can easily be detected for proteins with typical tryptophan percentages.  相似文献   

5.
To isolate mitochondrial complexes, we have combined elements from the classic Laemmli protocol and blue native polyacrylamide gel electrophoresis (BN–PAGE) methods to develop a straightforward modified native electrophoresis protocol. This modified protocol presented good resolution for native electrophoresis of inner mitochondrial membrane proteins, where bands were easily visualized with no leftover stain or gel lanes overlap. Enzymatic tests revealed that complexes I and V remain active in the gel. This protocol, designed to overcome specific limitations of the standard protocols, provides a potential methodology to study membrane proteins in their functional form.  相似文献   

6.
An improved native polyacrylamide gel electrophoresis (PAGE) method capable of evaluating the hydrodynamic states of membrane proteins and allowing in-gel fluorescence detection was established. In this method, bis(alkyl) sulfosuccinate is used to provide negative charges for detergent-solubilized membrane proteins to facilitate proper electrophoretic migration without disturbing their native hydrodynamic states. The method achieved high-resolution electrophoretic separation, in good agreement with the elution profiles obtained by size exclusion chromatography. The applicability of in-gel fluorescence detection for tagged green fluorescent protein (GFP) facilitates the analysis of samples without any purification. This method might serve as a general analytical technique for assessing the folding, oligomerization, and protein complex formation of membrane proteins.  相似文献   

7.
Y Wang  H Wei  Q Pan  Z Wang  R Xing  W Li  J Zhang  M Ding  J Guo  L Wu  Y Lu  S Liu 《Analytical biochemistry》2012,426(1):1-3
A sensitive and simple technique for the negative detection of lipopolysaccharides (LPSs) following polyacrylamide gel electrophoresis (PAGE) using eosin B (EB) was developed. After electrophoresis, gels were fixed, stained, and developed within 30 min to achieve transparent and colorless LPS bands under opaque gel matrix background. As low as 20 to 40 ng of total LPSs could be detected, which is 4-fold more sensitive than those of the widely used silver stain developed by Fomsgaard and coworkers and imidazole-zinc (IZ) negative stain. For its sensitivity and brevity, this stain may be a practical method for LPS determination in the routine laboratory.  相似文献   

8.
Lightning Fast is a sensitive fluorescence-based stain for detecting proteins in one-dimensional and two-dimensional polyacrylamide electrophoresis gels. It contains the fluorophore epicocconone from the fungus Epicoccum nigrum that interacts noncovalently with sodium dodecyl sulfate and protein. Stained proteins can be excited optimally by near-ultraviolet light of about 395 nm or with visible light of about 520 nm. The stain can be excited using a range of sources used in image analysis systems including UVA (ca. 365 nm) and UVB (ca. 302 nm) transilluminators; Xenon-arc lamps; 488 nm and 457 nm Argon-ion lasers; 473 nm and 532 nm neodymium: yttrium aluminum garnet (Nd:YAG) solid-state lasers; 543 nm helium-neon lasers, and emerging violet, blue and green diode lasers. Maximum fluorescence emission of the dye is at approximately 610 nm. The limit of detection in one-dimensional gels stained with Lightning Fast protein gel stain is less than 100 pg of protein, rivaling the current limits of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Lightning Fast was found to be considerably more sensitive than SYPRO Ruby, SYPRO Orange, silver and Coomassie Brilliant Blue G-250 in matched experiments. Staining takes as little as 3.5 h and stained proteins displayed quantitative linearity over more than four orders of magnitude, thereby allowing visualization of entire proteomes. Lightning Fast protein gel staining is compatible with subsequent peptide mass fingerprinting using MALDI-MS and Edman-based sequencing chemistry.  相似文献   

9.
Unfortunately, conventional large-format polyacrylamide gels are mechanically fragile, often tearing during the subsequent manipulations required for visualization of the proteins. This problem is compounded when large-format two-dimensional gels are subjected to multiple staining procedures in order to detect different classes of proteins, such as total protein, phosphoproteins, and glycoproteins. A mechanically durable liquid polyacrylamide-based matrix has been developed that, upon polymerization, facilitates the handling of one-dimensional and two-dimensional gels. The matrix, referred to as Rhinohide liquid acrylamide, is stable as a refrigerated solution for up to one year, and forms a polymer-reinforced polyacrylamide gel suitable for electrophoresis, upon addition of catalysts. The matrix is superior to previously reported durable gel matrices in that it does not cause distortion of high-molecular-weight bands and does not suffer from other spot morphology artifacts, such as doubling of protein spots in the molecular weight dimension. The matrix is particularly valuable for the analysis of proteins applying multiple applications of fluorescent dyes, as required with serial staining of proteins for phosphorylation, glycosylation, and total protein expression, using Pro-Q Diamond phosphoprotein stain, Pro-Q Emerald glycoprotein stain and SYPRO Ruby protein gel stain, respectively.  相似文献   

10.
We describe herein a modified differential gene display (DGD) technique that can be rapidly and simply performed and that eliminates the need for radioactivity by fluorescent visualization of complementary deoxyribonucleic acid (cDNA) bands with SYBR gold nucleic acid gel stain. To streamline the DGD procedure, a number of modifications were employed. Ribonucleic acid isolated from differentially treated populations of human trabecular bone-derived mesenchymal progenitor cells was reverse-transcribed into cDNA using oligo-dT primer, and subsequent amplification of differentially expressed cDNAs was done using arbitrary 25-mer primers and oligo-dT9 30-mer primers. Moderate-sized nondenaturing 6% polyacrylamide gels (30 × 20 cm) of 1.5-mm thickness were used for easier handling and increased sample loading capacity. Gels were subjected to electrophoresis overnight, stained with SYBR gold, and visualized and photographed using a commercially available gel imager. DNA bands ranging in size from 100 to 400 bp were visualized directly on an ultraviolet transilluminator, excised from the gel, and reamplified. The cDNA amplicons were subcloned, sequenced, and gene sequences were identified by a Basic Local Alignment Search Tool of genomic databases. Overall, this rapid and functional method proved quite effective for identification of novel genes that may be of interest in studies of cartilage and bone differentiation.  相似文献   

11.
Protein bands become visible in polyacrylamide gels containing 8 m urea after chilling the gels in air for 5 to 10 min at ?70°C. Urea appears to crystallize preferentially as opaque bands in regions of the gel where protein reduces the amount of free water available as solvent for the urea molecules. Thus detected, the gel sections containing protein bands from foot-and-mouth disease virus can be immediately cut out, and their proteins obtained by electrophoretic elution or extraction procedures. Analysis of the proteins for purity and concentration is then carried out by electrophoresing measured aliquots on analytical gels, staining with Coomassie brilliant blue, scanning the gels for absorbance at 600 nm, and converting peak areas to micrograms of protein using Folin phenol standard curves determined for each purified capsid protein. The most basic capsid protein and its in virion proteolytic-cleavage products stain metachromatically.  相似文献   

12.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

13.
We present a new method for visualizing proteins electrophoresed in sodium dodecyl sulfate-polyacrylamide gels. After electrophoresis, gels are incubated in CuCl2 to produce a negative image of colorless protein bands against a semiopaque background. Gels are stained completely within 5 min, do not require destaining, and can be stored indefinitely without loss of the image. Because proteins are not permanently fixed within the gel, they can be quantitatively eluted after chelation of Cu with EDTA. The sensitivity of the CuCl2 stain falls between that of Coomassie blue and silver. We anticipate that CuCl2 will be useful in the rapid analysis of proteins by polyacrylamide gel electrophoresis and in the preparation of purified polypeptides by elution from gel slices.  相似文献   

14.
建立一种以靛酚乙酸酯为底物的酯酶同工酶的显色新方法。酯酶样品的聚丙烯酰胺凝胶电泳(PAGE)凝胶用磷酸缓冲液漂洗约10min后,浸入含有0.002%靛酚乙酸酯的溶液显色5~10min,可显出清晰的蓝色酯酶带。先将酯酶凝胶板浸于有机磷农药溶液中,然后再用靛酚乙酸酯显色液显色,比较同工酶谱,从同工酶带由深蓝色变为浅蓝色的颜色变化,可以看出对有机磷农药敏感的同工酶所受到的抑制程度。  相似文献   

15.
Protein bands become visible in polyacrylamide gels containing 8 urea after chilling the gels in air for 5 to 10 min at −70°C. Urea appears to crystallize preferentially as opaque bands in regions of the gel where protein reduces the amount of free water available as solvent for the urea molecules. Thus detected, the gel sections containing protein bands from foot-and-mouth disease virus can be immediately cut out, and their proteins obtained by electrophoretic elution or extraction procedures. Analysis of the proteins for purity and concentration is then carried out by electrophoresing measured aliquots on analytical gels, staining with Coomassie brilliant blue, scanning the gels for absorbance at 600 nm, and converting peak areas to micrograms of protein using Folin phenol standard curves determined for each purified capsid protein. The most basic capsid protein and its in virion proteolytic-cleavage products stain metachromatically.  相似文献   

16.
采用不同的提取液,对10个小麦品种的非酶功能性种子储藏蛋白进行提取,分别进行梯度凝胶电泳分析。电泳依据提取液的不同,分别采用酸性或碱性系统。对酸性凝胶催化系统,采用Ap-Vc-FeSO4系统代替H2O2-Vc-FeSO4系统,克服了酸性凝胶的不足,提高了凝胶的性质性能并使之容易操作。应用新的催化系统配制的酸性梯度胶,提高了分辨率。并初步尝试以酸性系统分析种子谷蛋白,获得了成功,经过对不同提取液蛋白  相似文献   

17.
Reports describing polyacrylamide gel electrophoresis patterns of bovine hydrophobic surfactant proteins are not consistent. In this study, we found unusual staining characteristics of these proteins that may explain some of these inconsistencies. Low molecular weight surfactant proteins extracted from bronchoalveolar lavage with organic solvent are partially delipidated with Sephadex LH-20 chromatography using chloroform and methanol. Fractions from the first protein peak are dried under nitrogen then subjected to SDS electrophoresis on 20% polyacrylamide gels. Under nonreducing conditions, silver staining identifies 5- and 26-kDa bands, and Coomassie blue identifies 6-, 12-, and 26-kDa bands. When gels are stained with Coomassie blue then silver, the 5- and 26-kDa bands stain with silver and 6- and 12-kDa bands remain stained with Coomassie blue. If gels are first stained with silver then Coomassie blue, similar results occur. We modified the silver staining protocol by treating gels with dithiothreitol or 2-mercaptoethanol after electrophoresis. With this modification, 5-, 6-, 12-, 26-, and also 17-kDa bands are identifiable. Using the modified protocol and restaining gels previously stained with silver, 6-, 12-, and 17-kDa bands that were not identified previously all became visible. In further experiments, protein bands of 6-, 12-, and 26-kDa that were identified by Coomassie blue were electroeluted under nonreducing conditions. After electrophoresis of the eluted 26-kDa protein, bands of 17-, and 26-kDa under nonreducing, and 8-kDa only under reducing conditions, were apparent by using the modified silver protocol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An activity stain for the detection of pyridine nucleotide-linked dehydrogenases in polyacrylamide gels is described. Following incubation of the gel with substrate and cofactor, bands are visualized under ultraviolet light, where reduced cofactors fluoresce and oxidized cofactors appear black. The methods described are useful for any NAD- or NADP-linked dehydrogenase; the enzymes can be assayed in either the oxidative or the reductive direction. Also described is a preparative polyacrylamide gel system using the activity stain, which can be used as a general purification method for dehydrogenases. The preparative gels are crosslinked with bisacrylylcystamine. These crosslinks can be broken by the addition of thiols after the bands of interest have been located and excised. The protein of interest is then separated from the solubilized acrylamide by adsorption to a suitable resin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号