首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In normal human subjects under basal conditions, we have reported that molar concentrations of immunoreactive β-lipotropin (IR-β-LPH) are approximately threefold greater than those of IR-β-endorphin (β-Ep). Following acute stimulation, there is a further two- to threefold disproportionate rise in plasma concentrations of IR-β-LPH as compared to those of IR-β-Ep. To begin to assess the possible factors involved in such altered IR-β-LPH/IR-β-Ep ratios in plasma, the metabolic clearance rate (MCR), volume of distribution (Vd), fractional rate of disappearance (Kd), and half-life (t12) of these peptides were determined by means of bolus injection of highly purified human β-LPH and synthetic human β-Ep in normal human subjects. β-Ep was found to have an MCR and a Kd greater than that of β-LPH, and a shorter t12. These differences, however, although they may in part be contributory, cannot solely account for the greater ratio of IR-β-LPH to IR-β-Ep in plasma, or for the disproportionate rise in plasma concentrations of these peptides after acute stimulation.  相似文献   

2.
Specific binding of human β-endorphin to rabbit cerebellar and brain membranes was measured using [3H2-Tyr27]-βh-endorphin as the primary ligand. In both tissues binding was time dependent and saturable, with apparent equilibrium dissociation constants of 0.275 nM and 0.449 nM in the cerebellum and brain, respectively. The binding capacity of cerebellum is greater than that of brain. Kinetic studies showed that the association rate constants were 2.7 × 107 M?1min?1 for cerebellum and 2.4 × 107 M?1min?1 for brain. Dissociation of tritiated βh-endorphin from both cerebellum and brain is not consistent with a first order decay from a single site. In the cerebellum, these is a time-dependent increase in slowly dissociating complex. The potency of several opioid peptides and opiates to inhibit the binding of tritiated βh-endorphin was determined. Ligands with preference for μ, δ, and κ opiate receptor (morphine, Metenkephalin and ethylketocyclazocine) all have similar affinities toward βh-endorphin sites in both brain and cerebellar membranes.  相似文献   

3.
The kinetics of fructose uptake was determined in perfused rat liver during steady-state fructose elimination. On the basis of the corresponding values of fructose concentration in the affluent and in the effluent medium, and the fructose and ATP concentration in biopsies, the kinetics of membrane transport and intracellular phosphorylation in the intact organ was calculated according to a model system. Carrier-mediated fructose transport has a high Km (67 mM) and V (30 μmoles · min?1 ·g?1). The calculated kinetic constants of the intracellular phosphorylation were compared with values obtained with an acid-treated rat liver high speed supernatant (values given in parentheses). Km with fructose 1.0 mM (0.7 mM), Km with ATP 0.54 mM (0.37 mM), V 10.3 μmoles · min?1 · g?1 (10.1 μmoles · min?1 · g?1, calculated on the basis of the highest measured rate of fructose uptake correcting the ATP concentration to saturating values). The kinetics of fructose uptake reveals that at Physiological fructose concentrations the membrane transport limits the rate of fructose uptake, thus protecting the liver from severe depletion of adenine nucleotides.  相似文献   

4.
The binding characteristics of the β-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6±1.3 nM) but low capacity (32±17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both β-antagonists and β-agonists, competition at the low-affinity sites occurred only with β-antagonists and was non-stereoselective. Thus, the β-agonist (?)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6±0.5 nM) binding sites with a binding capacity of 53 ± 13 fmol/mg membrane protein (corresponding to 4000 ± 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a β1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of β-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (?)-isoproterenol represent the physiologically relevant β-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (?)-norepinephrine showed that the inhibitory effect of the α2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the α2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

5.
Kinetic properties of rat hepatic prolactin receptors   总被引:1,自引:0,他引:1  
Binding of 125I-labelled ovine prolactin to female rat liver membranes underequilibrium conditions showed an apparent Kd of 200 pM, and a Hill coefficient of 1.0. The association rate was second order, with a rate constant K1, of 2.1 × 107, 1.4 × 107, 1.2 × 107 and 4 × 106 M?1. min?1 at 37, 30, 24 and 4° respectively. At 24° there were two components to the dissociation; a faster phase with K?1=1.26 × 10?2. min?1 (T12=55 minutes) and a slower phase with K?1=1.103 × 10?3. min?1. The apparent Kd (from K?1K1) was 1.05 nM for the faster phase and 87.5 pM for the slower phase. These data suggest that there is a conformational change following hormone binding which results in an increased receptor affinity, which effectively prevents release of bound hormone.  相似文献   

6.
H Akil  S J Watson  J D Barchas  C H Li 《Life sciences》1979,24(18):1659-1665
Antiserum against human β-Endorphin (βhEP) has been obtained from rabbit. The antiserum, diluted 11500 bound I125 βh-EP, demonstrating an effective range from 10pM to 10nM. The sensitivity of the assay is 2–3 fmoles. This antibody exhibits 10–15% cross-reactivity with human β-Lipotropin (βh-LPH). β-EP-like immunoreactivity in rat blood has been detected in unextracted samples when compared to blood from hypophysectomized rats. The whole assay and calibration curves are carried out in plasma from hypophysectomized animals. β-EP-like immunoreactivity can be detected in normal rat plasma (75 ± 15 fmole/ml), and exhibits substantial increases with adrenalectomy (287 ± 32 fmoles/ml). In contrast, samples from five healthy normal human males gave values near the limits of detection of the assay (12 fmoles ± 3.9 per ml of plasma). Such values may be due to cross-reactivity of the antiserum with βh-LPH or other circulating hormones. In contrast, patients with elevated ACTH production and normal pregnant humans exhibit significantly elevated levels of β-EP immunoreactivity in plasma.  相似文献   

7.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

8.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

9.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

10.
We have investigated the interaction of VIP and secretin with two human lung carcinoma cell lines in cultures, SW-900 and Calu-1. 125I-labeled VIP binds to and is inactivated by SW-900 and Calu-1 cells in a time- and temperature-dependent manner. The rates of binding and of inactivation were higher at 30°C than at 15°C. At equilibrium, native VIP competitively inhibited the binding of 125I-VIP in the 10?10?10?7M range, half-maximal inhibition being observed at 1.2 nM in SW-900 cells and at 1.1 nM VIP in Calu-1 cells. Scatchard analysis indicated two classes of binding sites with similar characteristics in both cell lines. SW-900 cells have 27 600 sites with a high affinity (Kd = 0.34 nM) and 1062 000 sites with a low affinity (Kd = 61.4 nM). Calu-1 cells have 36 300 sites with a high affinity (Kd = 0.33 nM) and 1148 000 sites with a low affinity (Kd = 78.6 nM). Secretin inhibited tracer binding but with a 5000 times lower potency than native VIP in both cell lines.  相似文献   

11.
β-Adrenergic receptors were studied in intact cells of chick, rat and mouse embryo brain in primary cultures, by the specific binding of [3H]dihydro-l-alprenolol ([3H]DHA). The results were compared to the receptor binding of broken cell preparations derived from the cell cultures or from the forebrain tissues used for the preparation of the cultures. Detailed analysis of [3H]DHA binding to living chick brain cells revealed a high-affinity, stereoselective, β-adrenergic-type binding site. Equilibrium measurements indicated the apparent positive cooperativity of the binding reaction. By direct fitting of the Hill equation to the measured data, values of Bmax = 12.01 fmol/106 cells (7200 sites/cell), Kd = 60.23 pM and the Hill coefficient n = 2.78 were found. The apparent cooperative character of the binding was confirmed by the kinetics of competition with l-alprenolol, resulting in maximum curves at low ligand concentrations. The rate constants of the binding reaction were estimated as k+ = 8.31·107 M?1 · min?1 and k? = 0.28 min?1 from the association results, and k? = 0.24 min?1 from the dissociation data. The association kinetics supported the cooperativity of the binding, providing a Hill coefficient n = 1.76; Kd, as (k?/k+)1n was found to be 101 pM. Analysis of the equilibrium binding of [3H]DHA to rat and mouse living brain cells resulted in values of Bmax = 13.04 fmol/106 cells (7800 sites/cell), Kd = 43.85 pM and n = 2.52, and Bmax = 8.08 fmol/106 cells (4800 sites/cell), Kd = 46.70 pM and n = 1.63, respectively, confirming the apparent cooperativity of the β-receptor in mammalian objects, too. The [3H]DHA equilibrium binding to broken cell preparations of either chick, rat or mouse brain cultures or forebrain tissues was found to be non-cooperative, with a Hill coefficient n = 1, Kd in the range 1–2 nM, and a Bmax of 103–104 sites/cell. Our findings demonstrate that cell disruption causes marked changes in the kinetics of the β-receptor binding and in the affinity of the binding site, although the number of receptors remains unchanged.  相似文献   

12.
The effects of inorganic cations, n-hexanol, saccharose and 2H2O on the electrophoretic mobility and ζ-potential of membrane vesicles from nerve myelin were measured and the results compared with the corresponding effects of the same reagents on the transition voltage, VTr, of the nerve axon membrane. Different cation concentrations and 2H2O affect both potentials, the ζ-potential and VTr, in a parallel way. Saccharose and n-hexanol, however, shift VTr but leave the electrophoretic mobility of the myelin vesicles unchanged. These results suggest that VTr shifts are not necessarily linked to changes in the membrane surface charge density but may also be caused by an interaction between the reagent and non-polar groups of the membrane interior.  相似文献   

13.
Steady state Cl? flux across the Ehrlich mouse ascites cell membrane was studied when gluconate replaced Cl? in the external medium. Saturation behavior was observed; K12 was 23.9 mM Cl? and V was 758 μmol · g?1 dry weight · h?1. The cells lost K+, Cl? and H2O, consistent with relative impermeability to gluconate, and the Cl? efflux rate coefficient was elevated. The results indicate that a major portion of Cl? exchange occurs as a membrane transport process and suggest that the process is sensitive to intracellular Cl? levels.  相似文献   

14.
15.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

16.
17.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

18.
Initial rate, product inhibition, and isotope rate kinetic studies of pig heart mitochondrial and supernatant malate dehydrogenases, acting upon the nonphysiological substrates, meso-tartrate and 2-keto-3-hydroxysuccinate, are reported. The measured spontaneous keto-enol equilibrium for 2-keto-3-hydroxysuccinate in 0.05 m Tris-acetate (pH 8.0) at 25 °C favors the enol form, dihydroxyfumarate, with an apparent equilibrium constant of 0.036. The enzyme-catalyzed reaction favors meso-tartrate with an apparent equilibrium constant of 1.25 × 10?6, M?1 at pH 8.0. The mechanism apparently remains ordered bi bi for both enzymes when these nonphysiological substrates are used, and the chemical-converting hydride transfer step becomes more rate limiting for both enzymes. This conclusion is supported by VHVD and (VHKH)VDKD values of 2.6 and 3.1, respectively, for the mitochondrial enzyme and 1.9 and 2.9, respectively, for the supernatant enzyme.  相似文献   

19.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

20.
beta-Endorphin: characteristics of binding sites in the rat brain.   总被引:3,自引:0,他引:3  
Stereospecific binding of human β-endorphin to rat membrane preparations is described for the first time using [3H-Tyr27]-βh-endorphin as the ligand. The binding is time dependent and saturable with respect to βh-endorphin with an apparent dissociation constant of 0.3 nM. Sodium ion (100 mM) elevates this value to 2.5 nM but has no effect on the total number of binding sites present in the membrane preparation. The ability of certain β-endorphin analogs, opiate agonists as well as antagonists to inhibit the binding of βh-endorphin, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号