首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdialysis sampling is a well-known method for collection of low molecular weight hydrophilic analytes. Due to the success of this sampling technique for these analytes, many researchers have wanted to extend the use of this method to a wider range of analytes-particularly proteins and peptides. These analytes pose unique challenges during microdialysis sampling. The primary challenges are the reduced recovery across the dialysis semi-permeable membrane and the volume limitations/requirements for the typical immunoassay methods used for detection of proteins. This review covers the practical and theoretical aspects needed for in vivo microdialysis sampling of cytokines, which are a vitally important class of signaling proteins. In addition to the basics of the microdialysis method for sampling cytokines, the use of the microdialysis device as a localized cytokine delivery method is also described. Since relative recovery of cytokines is often low during microdialysis sampling, methods to improve the membrane recovery are discussed for in vitro and in vivo applications.  相似文献   

2.
We have previously published data on the analysis of glutamate in microdialysis samples using a commercially availble CE apparatus. Here we demonstrate further improvements in the analysis of both glutamate and aspartate from very small volume microdialysates. The limit of detection of our system has been increased to 10−9 M for both glutamate and aspartate. This permits microdialysis sampling time to be reduced to 2 min, thus improving the temporal resolution of microdialysis sampling. Concurrently, migration time has also been reduced such that resolution of both amino acids can be achieved inside 2 min. This new analytical method has been applied to the measurement of the EAA from microdialysis samples from the dentate gyrus of the hippocampus. Extracellular concentrations of both glutamate and aspartate increased to a maximum of 5- and 4.5-fold of preinfusion values, respectively, during infusion of 100 mM K+ through the microdialysis probe. This is consistent with the depolarization-evoked release of both amino acids from this brain region.  相似文献   

3.
Microdialysis sampling is a diffusion-based separation method that allows analytes to freely diffuse across a hollow fiber semi-permeable dialysis membrane. This sampling technique has been widely used for in vivo chemical collection. The inclusion of affinity-based trapping agents into the microdialysis perfusion fluid serves to improve the relative recovery via the binding reaction of low molecular weight hydrophobic analytes and larger analytes such as peptides and proteins. Here, we briefly review our past studies using different compounds (native cyclodextrins and antibodies) to improve microdialysis sampling recovery. A brief compilation of our studies using antibody-immobilized beads as a means to improve cytokine collection during microdialysis sampling is also described. We present new work focused on the use of antibody-immobilized bead microdialysis sampling enhancement for various endocrine hormones (amylin, GLP-1, glucagon, insulin, and leptin). The antibody-bead enhancement approach allowed for recovery enhancements that ranged between 3 and 20-fold for these peptides. Using the enhanced recovery approach, endocrine peptides at pM concentrations can be quantified. Finally, our initial work focused on developing non-antibody based enhancement agents using bovine serum albumin-heparin conjugates covalently bound to polystyrene microspheres is presented for the cytokine, tumor necrosis factor-alpha (TNF-alpha). Unlike antibodies, heparin provides the advantage of being reusable as an enhancement agent and served to improve the relative recovery of TNF-alpha by three-fold.  相似文献   

4.
Pediatric diffuse intrinsic pontine gliomas are aggressive brainstem tumors that fail to respond to treatment. We hypothesize that the protective features of the pons may hinder chemotherapeutic agents from entering pontine tissue compared with cortical brain tissue. To test this hypothesis, we developed a unique nonhuman primate model using microdialysis, a continuous in vivo extracellular sampling technique, to compare drug exposure concurrently in pontine tissue, cortical tissue, CSF, and plasma after intravenous administration of chemotherapeutic agents. The surgical coordinates and approach for microdialysis cannula–probe placement were determined in 5 adult male rhesus monkeys (Macaca mulatta) by using MRI. Microdialysis cannulas–probes were implanted stereotactically in the brain, retrodialysis was performed to measure relative recovery, and a 1-h intravenous infusion of temozolomide was administered. Continuous microdialysis samples were collected from the pons and cortex over 4 h with concurrent serial plasma and CSF samples. Postsurgical verification of microdialysis cannula–probe placement was obtained via MRI in 3 macaques and by gross pathology in all 5 animals. The MRI-determined coordinates and surgical methodologies resulted in accurate microdialysis probe placement in the pons and cortex in 4 of the 5 macaques. Histologic examination from these 4 animals revealed negligible tissue damage to the pontine and cortical tissue from microdialysis. One macaque was maintained for 8 wk and had no deficits attributed to the procedure. This animal model allows for the determination of differences in CNS penetration of chemotherapeutic agents in the pons, cortex, and CSF after systemic drug administration.Abbreviations: DIPG, diffuse intrinsic pontine glioma; ECF, extracellular fluidPediatric diffuse intrinsic pontine gliomas (DIPG) are aggressive tumors that cannot be surgically resected due to their location, and are resistant to chemotherapeutic and radiation therapies. As a result, children with DIPG have a dismal prognosis with median survival less than one year from diagnosis. One hypothesis for the poor efficacy of treatment is that innate CNS protective features, such as the blood–brain barrier and the blood–CSF barrier, shield the brainstem to a higher degree given its critical functions, and isolate pontine gliomas from treatment. To test this hypothesis, we developed a nonhuman primate model in rhesus monkeys to evaluate pontine tissue pharmacokinetics by using microdialysis, a continuous in vivo extracellular sampling technique based on diffusion. Microdialysis is the ‘gold standard’ for in vivo sampling methodologies in the CNS, enabling the collection of extracellular tissue fluid via passive diffusion by using a semipermeable membrane probe.A nonhuman primate model demonstrating the feasibility of microdialysis sampling from cortical brain tissue with concurrent pharmacokinetic sampling during chemotherapeutic drug administration has previously been established,3-5,7 but there are no current animal models that measure drug penetration into the pons. The location of the pons deep within the brain, as well as the vital brainstem functions associated with the pons, present additional obstacles to accurate microdialysis probe placement and sample collection. The objectives of the current study were to develop imaging and surgical procedures for the accurate placement of a microdialysis probe within the pons of rhesus monkeys for sample collection, to establish a method to perform microdialysis simultaneously in multiple CNS regions, and to develop a mechanism to perform repeated microdialysis in the same areas with a single invasive surgical procedure. This model allows for the pharmacokinetic comparison of drug penetration into pontine tissue, in conjunction with cortical tissue, plasma, and CSF, after intravenous administration.  相似文献   

5.
VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methylphosphonothiolate) is a low volatility organophosphorus (OP) nerve agent and therefore the most likely route of exposure is via percutaneous absorption. Microdialysis has been used as a tool to study percutaneous poisoning by VX in the anesthetised guinea pig. A liquid chromatography tandem mass spectrometry (LC–MS–MS) method using positive electrospray ionisation (ESI) was used to quantitate VX in microdialysate samples collected from microdialysis probes, implanted into a blood vessel of anesthetised guinea pigs. The method resulted from modification of a LC–MS–MS method previously developed for the analysis of dermal microdialysates. Modification increased the sensitivity of the method, allowing quantitation of the trace levels of VX in blood microdialysates, over the range 0.002–1 ng/ml, with linear calibration. Quantitative results have been used to determine the time course of VX concentrations in the blood of guinea pigs following percutaneous poisoning.  相似文献   

6.
Tsai TH  Huang CT  Shum AY  Chen CF 《Life sciences》1999,65(16):1647-1655
Biliary excretion and intestinal reabsorption in enterohepatic circulation play major dispositional roles for some drugs. To circumvent multiple blood sampling and interruption of enterohepatic circulation in conventional biliary cannulation, the present study utilized the minimally invasive sampling technique of microdialysis in pharmacokinetics and biliary excretion studies. Microdialysis probes were inserted into the jugular vein and bile duct in the anesthetized rat for simultaneous and continuous sampling following intravenous administration of esculetin, a bioactive coumarin derivative. Placements of the microdialysis probes were designed to minimize obstruction to normal flows of the body fluids. Separation and quantitation of esculetin in the dialysates were achieved using high performance liquid chromatography (HPLC) coupled to UV detection. The results indicated higher drug concentrations in the bile than in the blood, suggesting active biliary excretion. The study also provided an example of successful application of in vivo microdialysis as an interesting and feasible alternative for pharmacokinetics and biliary drug excretion studies.  相似文献   

7.
Experimental and theoretical microdialysis studies of in situ metabolism   总被引:2,自引:0,他引:2  
Microdialysis sampling was performed to monitor localized metabolism in vivo and in vitro. A mathematical model that accounts for analyte mass transport during microdialysis sampling was used to predict metabolite concentrations in the microdialysis probe during localized metabolism experiments. The model predicts that metabolite concentrations obtained in the microdialysis probe are a function of different experimental parameters including membrane length, perfusion fluid flow rate, and sample diffusive and kinetic properties. Different microdialysis experimental parameters including membrane length and perfusion fluid flow rate were varied to affect substrate extraction efficiency (E(d)), or loss to the sample matrix, in vivo and in vitro. Local hepatic metabolism was studied in vivo in male Sprague-Dawley rats by infusing acetaminophen through the microdialysis probe. Acetaminophen sulfate concentrations increased linearly with respect to acetaminophen E(d) in contrast to modeling predictions. Xanthine oxidase was used as an in vitro model of localized metabolism. In vitro experimental results partially matched modeling predictions for 10-mm probes. These results suggest that monitoring local metabolism using microdialysis sampling is feasible. It is important to consider system parameters such as dialysis flow rate, membrane length, and sample properties because these factors will affect analyte concentrations obtained during local metabolism experiments.  相似文献   

8.
沈丽敏  陈郁初 《生命科学》1999,11(3):137-139,134
应用透析原理对脑内细胞外液中神经化学物质进行取样分析的想法已有20多年历史,对脑内细胞外液进行分析可以更好地了解中枢神经系统的生理和病理情况,而微透析技术就是一种用来测定脑内细胞外液神经递质浓度的取样方法,随着探头设计的微型化和高灵敏度的分析方法的建立,微透析技术在许多实验室已成为一种常规实验手段,近年来,以猴脑的研究对象的微透析实验呈增长趋势,并获得了一些崭新的结果,本文介绍在猴脑上进行微透技术  相似文献   

9.
王优  高永良 《生物磁学》2009,(16):3150-3152
微透析技术作为一门新兴的技术,近年来多用于靶向分布和体内代谢等方面,尤其是在药物的脑部研究方面,该技术显得尤为重要。如今,随着新型探针的不断出现,以及微量、快速、灵敏的分析检测手段的发展,微透析技术已日益成为药物脑部研究的重要工具。现通过检索近十年来的相关文献,对脑微透析技术的概况、原理、脑微透析探针以及其应用作一综述,希望能为从事该方面研究的药学工作者提供相关参考。  相似文献   

10.
Microdialysis sampling coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS) was used to observe in vitro 11beta-hydroxysteroid dehydrogenase type 1 (HSD1) enzyme-catalyzed conversion of stable-isotope-labeled cortisone to cortisol in liver microsomes from dog, monkey, and human. Experimental conditions that would affect the microdialysis sampling approach including probe length, perfusion fluid flow rate, extraction efficiency (E(d)), substrate concentration, and enzyme reaction conditions were evaluated. Dialysates containing high salt concentrations (>150 mM) were directly assayed using LC/MS/MS without additional sample cleanup. The sensitivity (with lower level of quantitation at 0.1 ng/mL) and selectivity of this assay allowed detection of the enzyme reactants at physiologically relevant levels. The interconversion from M+4 cortisone to M+4 cortisol was detected in dog, human, and monkey liver microsomes. Results show species-specific reaction profiles, with a five times higher conversion rate in dog liver microsomes than in human and monkey liver microsomes. Based on M+4 cortisol production rate obtained using a microdialysis infusion of M+4 cortisone to the microsomes coincubated with a proprietary 11beta-HSD1 inhibitor of different concentrations, the degrees of enzyme inhibition were found to be 40 and 85%, consistent with values obtained by a traditional in vitro incubation method. The microdialysis sampling methodology with LC/MS/MS provided extensive information about 11beta-HSD1 activities in microsomes from different mammalian species.  相似文献   

11.
Microdialysis is a relatively new in vivo sampling technique, which allows repeated collecting of interstitial fluid and infusion of effector molecules into the tissue without influencing whole body function. The possibility of using microdialysis catheter with a large-pore size dialysis membrane (100 kDa) to measure concentrations of the adipocyte-derived peptide hormone leptin in interstitial fluid of adipose tissue was explored. Krebs–Henseleit buffer with 40 g/l dextran-70 was used to prevent perfusion fluid loss across the dialysis membrane. The relative recovery of leptin in vitro was determined using CMA/65 microdialysis catheter (100 kDa cut-off, membrane length 30 mm; CMA, Stockholm, Sweden) and four perfusion rates were tested (0.5, 1.0, 2.0, 5.0 μl/min). Furthermore, the microdialysis catheter CMA/65 was inserted into subcutaneous abdominal adipose tissue of 11 healthy human subjects and leptin concentrations in the interstitial fluid of adipose tissue in vivo were measured. The present findings are the first documentation on the use of microdialysis to study local leptin concentrations in the interstitial fluid of adipose tissue.  相似文献   

12.
Microdialysis sampling of lipophilic molecules in human tissues is challenging because protein binding and adhesion to the membrane limit recovery. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) forms complexes with hydrophobic molecules thereby improving microdialysis recovery of lipophilic molecules in vitro and in rodents. We tested the approach in human subjects. First, we determined HP-ß-CD influences on metabolite stability, delivery, and recovery in vitro. Then, we evaluated HP-ß-CD as microdialysis perfusion fluid supplement in 20 healthy volunteers. We placed 20 kDa microdialysis catheters in subcutaneous abdominal adipose tissue and in the vastus lateralis muscle. We perfused catheters with lactate free Ringer solution with or without 10% HP-ß-CD at flow rates of 0.3–2.0 µl/min. We assessed tissue metabolites, ultrafiltration effects, and blood flow. In both tissues, metabolite concentrations with Ringer+HP-ß-CD perfusate were equal or higher compared to Ringer alone. Addition of HP-ß-CD increased dialysate volume by 10%. Adverse local or systemic reactions to HP-ß-CD did not occur and analytical methods were not disturbed. HP-ß-CD addition allowed to measure interstitial anandamide concentrations, a highly lipophilic endogenous molecule. Our findings suggest that HP-ß-CD is a suitable supplement in clinical microdialysis to enhance recovery of lipophilic molecules from human interstitial fluid.  相似文献   

13.
The use of capillary electrophoresis (CE) for the analysis, identification, and characterization of microorganisms has been gaining in popularity. The advantages of CE, such as small sample requirements, minimal sample preparation, rapid and simultaneous analysis, ease of quantitation and identification, and viability assessment, make it an attractive technique for the analysis of microbial analytes. As this instrumental method has evolved, higher peak efficiencies have been achieved by optimizing CE conditions, such as pH, ionic strength, and polymer additive concentration. Experimental improvements have allowed better quantitation and more accurate results. Many practical applications of this technique have been investigated. Viability and identification of microbes can be accomplished in a single analysis. This is useful for evaluation of microbial analytes in consumer products. Diagnosis of microbe-based diseases is now possible, in some cases, without the need for culture methods. Microbe-molecule, virus-antibody, or bacteria-antibiotic interactions can be monitored using CE, allowing for the screening of possible drug candidates. Fermentation can be monitored using this system. This instrumental approach can be adapted to many different applications, including assessing the viability of sperm cells. Progress has been made in the development of microelectrophoresis instrumentation. These advances will eventually allow the development of small, dedicated devices for the rapid, repetitive analyses of specific microbial samples. Although these methods may never fully replace traditional approaches, they are proving to be a valuable addition to the collection of techniques used to analyze, quantitate, and characterize microbes. This review outlines the recent developments in this rapidly growing field.  相似文献   

14.
The use of capillary electrophoresis (CE) for the analysis, identification, and characterization of microorganisms has been gaining in popularity. The advantages of CE, such as small sample requirements, minimal sample preparation, rapid and simultaneous analysis, ease of quantitation and identification, and viability assessment, make it an attractive technique for the analysis of microbial analytes. As this instrumental method has evolved, higher peak efficiencies have been achieved by optimizing CE conditions, such as pH, ionic strength, and polymer additive concentration. Experimental improvements have allowed better quantitation and more accurate results. Many practical applications of this technique have been investigated. Viability and identification of microbes can be accomplished in a single analysis. This is useful for evaluation of microbial analytes in consumer products. Diagnosis of microbe-based diseases is now possible, in some cases, without the need for culture methods. Microbe-molecule, virus-antibody, or bacteria-antibiotic interactions can be monitored using CE, allowing for the screening of possible drug candidates. Fermentation can be monitored using this system. This instrumental approach can be adapted to many different applications, including assessing the viability of sperm cells. Progress has been made in the development of microelectrophoresis instrumentation. These advances will eventually allow the development of small, dedicated devices for the rapid, repetitive analyses of specific microbial samples. Although these methods may never fully replace traditional approaches, they are proving to be a valuable addition to the collection of techniques used to analyze, quantitate, and characterize microbes. This review outlines the recent developments in this rapidly growing field.  相似文献   

15.
Rotigotine, an investigational dopamine agonist formulated as a patch, is being studied in Parkinson's disease. A microdialysis technique, in combination with microbore column liquid chromatography and electrochemical detection, was developed to monitor rotigotine levels in the brain. Microdialysis probes were inserted into the striata of anesthetized rats, and samples were collected during perfusion with Ringer's solution. Rotigotine was separated using a C18 reversed-phase column. The mobile phase consisted of 50mM Na(2)HPO(4) x 2H(2)O, 2.5 mM sodium octyl sulfonate, and pH 4.5; 35% volume to volume acetonitrile. The flow rate was 30 microl/min, and the potential of the glassy carbon electrode was set to +850 mV. The method allowed monitoring of the time course of brain extracellular rotigotine levels with a detection limit of 1 nM following either intravenous (0.5 mg/kg) or subcutaneous (5.0 mg/kg) rotigotine injection.  相似文献   

16.
Separation methods for pharmacologically active xanthones   总被引:1,自引:0,他引:1  
Xanthones, as a kind of polyphenolic natural products with many strong bioactivities, are attractive for separation scientists due to the similarity and diversity of their structures resulting in difficult separation by chromatographic methods. High performance liquid chromatography (HPLC) and thin layer chromatography (TLC) are traditional methods to separate xanthones. Recently, capillary electrophoresis (CE), as a micro-column technique driven by electroosmotic flow (EOF), with its high efficiency and high-speed separation, has been employed to separate xanthones and determine their physicochemical properties such as binding constants with cyclodextrin (CD) and ionization constants. Since xanthones have been used in clinic treatment, the development of chromatographic and CE methods for the separation and determination of xanthones plays an essential role in the quality control of some herbal medicines containing xanthones. This article reviewed the separation of xanthones by HPLC, TLC and CE, citing 72 literatures. This review focused on the CE separation for xanthones due to its unique advantages compared to chromatographic methods. The comparison of separation selectivity of different CE modes including capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic capillary chromatography (MEEKC) and capillary electrochromatography (CEC) was discussed. Compared with traditional chromatographic methods such as HPLC and TLC, CE has higher separation efficiency, faster separation, lower cost and more flexible modes. However, because of low sensitivity of UV detector and low contents of xanthones in herbal medicines, CE methods have seldom been applied to the analysis of real samples although CE showed great potential for xanthone separation. The determination of xanthones in herbal medicines has been often achieved by HPLC. Hence, how to enhance CE detection sensitivity for real sample analysis, e.g. by on-line preconcentration and CE-MS, would be a key to achieve the quantitation of xanthones.  相似文献   

17.
To evaluate the biodisposition of ceftazidime in rat blood, a rapid and simple microbore liquid chromatographic technique together with a microdialysis sampling technique were developed. This method involves an on-line design for blood dialysate directly injected into a microbore liquid chromatographic system. The chromatographic conditions consisted of a mobile phase of methanol–acetonitrile–100 mM monosodium phosphoric acid (pH 3.0) (10:10:80, v/v/v) pumped through a microbore reversed-phase column at a flow-rate of 0.05 ml/min. With the detection wavelength set at 254 nm, a good linear correlation was observed between the peak area and the ceftazidime concentration at 0.1 to 50 μg/ml (r=0.999). Microdialysis probes, being custom-made, were screened for acceptable in vivo recovery while chromatographic resolution and detection were validated for response linearity, as well as intra-day and inter-day variabilities. This method was then applied to the pharmacokinetic profiling of ceftazidime in blood following intravenous 50 mg/kg administration to rats. The pharmacokinetics was calculated from the corrected data for dialysate concentrations of ceftazidime versus time. This method has been used to study ceftazidime pharmacokinetics in rats and has proven to be rapid and reproducible.  相似文献   

18.
Microdialysis technique has been developed to study secretory function of the adrenal gland in anesthesized rats. Concentration of adrenaline and noradrenaline in sequential 20 min microdialysis samples was measured by HPLC with electrochemical detection. The suitability of method was tested by local and central stimulation of catecholamine secretion. In the first case 100 mmol of KCl or 1 mmol of carbachol were added to perfusion medium, in the second one hypovolemic hypotension was applied. All the stimuli used increased catecholamine levels in the adrenal gland dialysates. Institute of Experimental Cardiology of the All-Union.  相似文献   

19.
微透析校正的相关问题和方法   总被引:9,自引:0,他引:9  
微透析技术是研究生物动态变化的一种新型的活体生物采样技术,近年来由于实验方法的不断改进,微透析技术已广泛应用于在体的定量研究。在进行生物细胞外液的定量研究中,微透析探针的校正是十分必要的。本从微透析的回收率、影响因素及校正方法等方面简要介绍了微透析校正的相关问题。  相似文献   

20.
Leegsma-Vogt G  Janle E  Ash SR  Venema K  Korf J 《Life sciences》2003,73(16):2005-2018
Ultrafiltration (UF) is a filtrate selection method with a wide range of biomedical and clinical applications, including detoxification of blood in hemodialysis and peritoneal dialysis. New is, however, the use of UF as a convenient in vivo sampling method that, for example, has been used in diabetics. Ultrafiltration avoids complicated and time-consuming recovery calculations that are necessary when using in vivo microdialysis, as recoveries of low molecular weight molecules are near 100%. The subcutaneously or intravenously placed UF probes have been studied for off-line sample analysis and for continuous on-line monitoring, in a wide variety of species, including dogs, rats, pigs and humans. This review discusses the potential of in vivo UF as a continuous tissue sampling technique in clinical research areas, and in several major biomedical applications including glucose and lactate monitoring and drug kinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号