首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Coral communities were investigated in the northern Red Sea, in the Gulfs of Suez and Aqaba, for their framework building potential. Five types of coral frameworks were differentiated: Acropora reef framework, Porites reef framework, Porites carpet, faviid carpet, and Stylophora carpet. Two non-framework community types were found: the Stylophora-Acropora community, and soft coral communities. Reef frameworks show a clear ecological zonation along depth and hydrodynamic exposure gradients, with clear indicator communities for each zone. By definition, coral carpets build a framework but lack distinct zonation patterns since they grow only in areas without pronounced gradients. In the northern Red Sea they show a gradual change with depth from Porites to faviid dominance. A Stylophora carpet is restricted to shallow water in the northern Gulf of Suez. Although growth rates of carpets may be somewhat less than those of reefs, the carbonate accumulation is considered to be higher in carpet areas due to their significantly higher areal extension. In addition, reefs and carpets have different sediment retention characteristics – the carpet retains, the reef exports. The in situ fossilization potential of coral carpets is expected to be higher than that of reef frameworks. Accepted: 25 May 1999  相似文献   

2.

The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  相似文献   

3.
Summary The reefs near Safaga, Egypt, are built mainly by coral species ofPorites andAcropora. These genera are in general important for the formation of coral communities and reef structures. WhileMontipora orPavona are also species rich, their mean colony size is too small for a substantial role in the build-up of carbonate mass. Yet as a host coral,Montipora is more important thanPorites; both may accommodate the pectinidPedum and certain species of mytilidLithophaga. Such associations appear to be typical for specific reef areas and to be correlated to the food supply of the bivalves. These findings can be used for an actuopaleontological interpretation of the fossil situation. In addition to the frequency of occurrence, factors such as the growth form, growth rate, skeletal density and lifespan of corals are essential in determining their share in reef construction.  相似文献   

4.
The analysis of 8 selected cores through fringing reefs in New Caledonia reveals that accretion in the Holocene has been less than 6 m. The cores exhibit three main facies: branching coral (Acropora, dominantly), massive coral heads (Porites, mainly) and coral sand/ rubble, principally made up of acroporid fragments. Subordinate facies are composed of coralline algae and alcyonarian spiculite. The initiation of growth varies according to location. The southern reefs (i.e. early settled reefs) generally began to grow first, prior to 5000 y BP. The northern structures (i.e. more recently settled reefs) are younger, occurring after 4200 y BP. This retardation could be ascribed to differences in local physical conditions (nature of substrate, wave energy). Vertical accretion rates were generally higher in areas of lower energy (3.25–6.4 mm·y-1) versus those exposed to higher energy conditions (1.4–3.1 mm·y-1). Vertical development through time was accompanied by changes in composition of biological assemblages which reflect changes in hydrodynamics. The basal Acropora-dominated facies was replaced upwards by a Porites-dominated framework. The New Caledonian fringing reefs reached the sea surface generally between 5000 and 2500 y BP after the stabilization of sea level. Hence all of these reefs can be classified as catch-up reefs.  相似文献   

5.
Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.  相似文献   

6.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

7.
Coral reefs distant from human population were sampled in the Red Sea and one‐third showed degradation by predator outbreaks (crown‐of‐thorns‐starfish = COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20 years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote‐sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20‐year disturbance frequency, but degradation at higher frequency. Trajectories move from fast‐grower to slow‐grower dominance at intermediate disturbance frequency, then again to fast‐grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option.  相似文献   

8.
Coral reefs are often subject to disturbances that can cause enduring changes in community structure and abundance of coral reef organisms. In Moorea, French Polynesia, frequent disturbances between 1979 and 2003 caused marked shifts in taxonomic composition of coral assemblages. This study explores recent changes in live cover and taxonomic structure of coral communities on the north coast of Moorea, French Polynesia, to assess whether coral assemblages are recovering (returning to a previous Acropora-dominated state) or continuing to move towards an alternative community structure. Coral cover declined by 29.7% between July 2003 and March 2009, mostly due to loss of Acropora and Montipora spp. Coral mortality varied among habitats, with highest levels of coral loss on the outer reef slope (7–20 m depth). In contrast, there was limited change in coral cover within the lagoon, and coral cover actually increased on the reef crest. Observed changes in coral cover and composition correspond closely with the known feeding preferences and observed spatial patterns of Acanthaster planci L., though observed coral loss also coincided with at least one episode of coral bleaching, as well as persistent populations of the corallivorous starfish Culcita novaeguineae Muller & Troschel. While climate change poses an important and significant threat to the future structure and dynamics coral reef communities, outbreaks of A. planci remain a significant cause of coral loss in Moorea. More importantly, these recent disturbances have followed long-term shifts in the structure of coral assemblages, and the relative abundance of both Pocillopora and Porites continue to increase due to disproportionate losses of Acropora and Montipora. Moreover, Pocillopora and Porites dominate assemblages of juvenile corals, suggesting that there is limited potential for a return to an Acropora-dominated state, last recorded in 1979.  相似文献   

9.
Patterns of hard coral and sea urchin assemblage structure (species richness, diversity, and abundance) were studied in Kenyan coral reef lagoons which experienced different types of human resource use. Two protected reefs (Malindi and Watamu Marine National Parks) were protected from fishing and coral collection, but exposed to heavy tourist use. One reef (Mombasa MNP) received protection from fishermen for one year and was exploited for fish and corals prior to protection and was defined as a transitional reef. Three reefs (Vipingo, Kanamai, and Diani) were unprotected and experienced heavy fishing and some coral collection. Protected and unprotected reefs were distinct in terms of their assemblage structure with the transitional reef grouping with unprotected reefs based on relative and absolute abundance of coral genera. Protected reefs had slightly higher (p<0.01) coral cover (23.6 ± 8.3 % ± S.D.) than unprotected reefs (16.7 ± 8.5), but the transitional reef had the highest coral cover (30.8 ± 6.4) which increased by 250% since measured in 1987: largely attributable to a large increase inPorites nigrescens cover. Protected reefs had higher coral species richness and diversity and a greater relative abundance ofAcropora, Montipora andGalaxea than unprotected reefs. The transitional reef had high species richness, but lower diversity due to the high dominance ofPorites. Sea urchins showed the opposite pattern with highest diversity in most unprotected reefs. Coral cover, species richness, and diversity were negatively associated with sea urchin abundance, but the relative abundance ofPorites increased with sea urchin abundance to the point wherePorites composed >90% of the coral cover at sites with the highest sea urchin abundance. Effects of coral overcollection was only likely for the genusAcropora (staghorn corals). A combination of direct and indirect effects of human resource use may reduce diversity, species richness, and abundance of corals while increasing the absolute abundance of sea urchins and the relative cover ofPorites.  相似文献   

10.
Multi-species synchronous spawning was first described on reefs off the east and west coast of Australia. In contrast, locally abundant species in the northern Red Sea and the central Pacific have little overlap in the time of reproduction. Consequently, the idea developed that high levels of spawning synchrony both within and among species was largely confined to Australian reefs. Here, we show that gamete maturity in colonies of the genus Acropora was highly synchronous in the Red Sea. In early April 2008, at two locations separated by 300 km, 13 of 24 species sampled had mature colonies, and a further 9 species had immature colonies. In late April–early May 2008, all colonies sampled had no oocytes, indicating colonies had spawned a few days after the full moon of 20 April 2008. Similarly, in 2009, 99% of colonies from 17 species at Hurghada were mature in late April, and all were empty in early May. Spawn slicks suggested many of these colonies had released gametes three night prior to the full moon on 8 May 2009. This level of synchrony in gamete maturity is among the highest ever recorded and similar to that typically recorded in Acropora assemblages on Australian reefs. While further work is required to document the night of gamete release, these data strongly suggest that high levels of spawning synchrony are a regular feature of these Red Sea coral assemblages and that multi-species spawning occurs on or around the full moon in April and/or May.  相似文献   

11.
Fishes of the genus Gobiodon are habitat specialists by their association with Acropora corals. Little is known about the parameters that define host coral quality for these fishes, in particular their breeding pairs. Data were collected in the northern Red Sea using 10 × 1-m belt transects in different reefs and zones. Gobiid density was highly correlated with coral density over all sites and zones, and the more specialized goby species preferred coral species that are less vulnerable to environmental stress. Moreover, the occupation rate of corals by goby breeding pairs significantly increased with colony size and decreased with partial mortality of colonies. Logistic regression showed that both coral size (being most important) and partial mortality are key factors influencing the occupation by breeding pairs. This study provides the first evidence that breeding pairs of coral-associated gobiids have more advanced habitat requirements than con-specifics in other social states. As coral reefs are threatened worldwide and habitat loss and degradation increase, this information will help predict the potential effects on those reef fishes obligatorily associated with live corals.  相似文献   

12.
Quantitative coral damage assessment by means of line transects was performed in several northern Red Sea coral reef sites in Israel (Eilat) and Egypt (Hurghada area). Reefs with high and low visitor frequency were compared. For both reef systems, breakage was found to be the most common damage category, being significantly higher on highly frequented reefs. Also, all observed damage (breakage, tissue loss, algal overgrowth) was most frequent within the first ten meters depth. A significant difference in the amount of corals overgrown by algae was found on the reefs near Hurghada as compared to all other reefs. Algal overgrowth was correlated with the occurrence of tissue loss and breakage, being considered as a consequence of pollution or the former damage types. In all cases of damage, Acropora was the most frequently affected genus, while Millepora dichotoma was the most affected species.  相似文献   

13.
The nudibranch Phestilla sibogae feeds only on corals of the genus Porites. The nudibranch's minute (∼ 200 μm) larvae are specifically induced to settle and metamorphose by a chemical cue released by the coral, causing the larvae to recruit to reefs composed predominantly of Porites compressa. In this study, we investigated temporal and spatial patterns of recruitment of P. sibogae into coral reefs in Kane?ohe Bay, HI. We collected heads of P. compressa at 3-week intervals for 3 years, brought them to the laboratory and maintained them in aquaria fed with filtered seawater for 2 weeks, and then examined them for the presence of juvenile P. sibogae that had grown large enough to be seen. We found that P. sibogae recruits to the Porites reefs of Kane?ohe Bay sporadically and unpredictably throughout the year. Although most coral samples contained no or very few P. sibogae, three periods of intense recruitment (90-450 juvenile P. sibogae kg− 1 of coral) were recorded, all in different seasons. Size-frequency analysis of recruits on the coral revealed high rates of post-settlement mortality in the field, most likely due to predation. Given the short pre-competent larval period of P. sibogae, the low rate of flushing of Kane?ohe Bay and the patterns of recruitment observed, we conclude that this population of P. sibogae is essentially a self-recruiting one. Two of the sampled reefs were characterized by unidirectional flow, allowing us to test a model of transport of larvae of P. sibogae responding to dissolved coral cue in turbulent, wavy flow. The model predicts that more larvae will be transported into upstream portions of a reef than into downstream portions, a prediction confirmed by analysis of the field-recruitment data. Furthermore, field releases of larval mimic particles also showed that most mimics landed in the upstream areas of reefs and down among the bases of coral branches, rather than at their tips.  相似文献   

14.

Coral cover and community structure in the Arabian Gulf have changed considerably in recent decades. Recurrent bleaching events have dramatically reduced the abundance of previously dominant Acropora corals and have given space to other more thermally resistant coral taxa. The loss of Acropora spp. has reduced reef structural complexity and associated biodiversity. Sir Bu Nair Island (SBN) is a nature reserve in the United Arab Emirates that sustains some of the last dense and extensive Acropora stands in the southern Gulf. This study investigated coral recruitment at a southern coral reef on SBN and examined larval dispersal and reef connectivity between SBN and other local and regional reefs through an agent-based model coupled with a 3D hydrodynamic model. Recruitment was surveyed with settlement tiles deployed from April to September 2019. Contrary to other reefs in the Gulf, we found that Acropora is indeed the major coral recruiter settling at SBN reefs, followed by Porites. The models indicate that SBN reefs are mostly self-seeding but also connected to other reefs in the Gulf. SBN can supply coral larvae to the neighbouring islands Siri and Abu Musa, and nearby reefs along with the north-eastern Emirates, Iranian coast and Strait of Hormuz. Findings highlight the importance of SBN to protect remnant populations of the locally almost extinct Acropora in a region where natural coral recovery is increasingly sparse.

  相似文献   

15.

In a time of unprecedented ecological change, understanding natural biophysical relationships between reef resilience and physical drivers is of increasing importance. This study evaluates how wave forcing structures coral reef benthic community composition and recovery trajectories after the major 2015/2016 bleaching event in the remote Chagos Archipelago, Indian Ocean. Benthic cover and substrate rugosity were quantified from digital imagery at 23 fore reef sites around a small coral atoll (Salomon) in 2020 and compared to data from a similar survey in 2006 and opportunistic surveys in intermediate years. Cluster analysis and principal component analysis show strong separation of community composition between exposed (modelled wave exposure > 1000 J m−3) and sheltered sites (< 1000 J m−3) in 2020. This difference is driven by relatively high cover of Porites sp., other massive corals, encrusting corals, soft corals, rubble and dead table corals at sheltered sites versus high cover of pavement and sponges at exposed sites. Total coral cover and rugosity were also higher at sheltered sites. Adding data from previous years shows benthic community shifts from distinct exposure-driven assemblages and high live coral cover in 2006 towards bare pavement, dead Acropora tables and rubble after the 2015/2016 bleaching event. The subsequent recovery trajectories at sheltered and exposed sites are surprisingly parallel and lead communities towards their respective pre-bleaching communities. These results demonstrate that in the absence of human stressors, community patterns on fore reefs are strongly controlled by wave exposure, even during and after widespread coral loss from bleaching events.

  相似文献   

16.
Summary This study documents the facies and fauna of Late Jurassic (Middle Oxfordian) coral reefs in England. Sedimentological and palaeoecological analysis of these reefs distinguishes three generic reef types: (1) small reef patches and thickets associated with siliciclastic deposits; (2) small reef patches and thickets associated with siliciclastic-free bioclastic grainstones and packstones; and (3) biostromal units associated with deep water facies. The depositional environments of these reef types are discussed. Two coral assemblages are identified: (1) the microsolenid assemblage; and (2) theThamnasteria, Isastraea, Fungiastraea andThecosmilia assemblage (Thamnasteria assemblage). TheThamnasteria assemblage developed in all shallow water environments in the study area, regardless of local environmental conditions. The fauna is very eurytopic,r-selected and can tolerate significant environmental fluctuations on short temporal scales (sub-seasonal). The main control on the development of the microsolenid assemblage was low light intensity, low background sedimentation rates and low hydrodynamic energy levels.  相似文献   

17.

Mass coral bleaching events may have disproportionate effects on branching corals, leading to coral community restructuring, reduced biodiversity, and decreased structural complexity. This affects overall reef health and resilience. Functionally important, fast-growing branching Acropora corals were a historically dominant and vital component of Indonesian reefs throughout the twentieth century, yet the genus is also one of the most vulnerable to external stressors. This study used long-term annual reef monitoring data from Indonesia’s Wakatobi Marine National Park (WMNP) to investigate the effects of a mass bleaching event in 2010 on Acropora and other branching corals, evaluate their post-disturbance recovery trajectories, and analyse shifts in coral community composition. Post-bleaching scleractinian coral cover decreased across study sites, with losses in branching corals especially evident. Long-term branching Acropora cover decreased significantly and failed to demonstrate the significant post-disturbance recovery of other branching corals (especially Porites). In areas characterised by relatively high branching Acropora cover (> 15% mean cover) prior to bleaching, long-term coral community composition changes have trended predominately towards branching and massive Porites and branching Montipora. The novelty and key contribution of this study is that results suggest suppressed recovery of Acropora in the WMNP. Contributing factors may include the Allee effect (inhibition of reproduction at low population densities), other forms of inhibited larval recruitment, direct and indirect spatial competition, and changes in the physical reef habitat. These findings have critical implications for this functionally important taxon, future reef conservation efforts, and overall reef health and resilience in the park.

  相似文献   

18.
Juvenile coral abundance and community composition depend on the spatial scale studied. To investigate this, an evaluation was made of juvenile coral density with hierarchical spatial analysis in the northern Mesoamerican Barrier Reef System (MBRS) at ~10 m depth. Study scope included semi-protected and unprotected areas located in this region. A total of 19 juvenile coral taxa were found, including 10 scleractinian species, 8 scleractinian coral genera not identified to species, and 1 Millepora species (Hydrozoa-Milleporidae). In terms of relative abundance, Agaricia spp., Siderastrea spp., and Porites spp. were the main juvenile taxa in the coral community at the surveyed sites, reefs, and regions levels. Greater variance was seen at smaller scales, at site level for taxa richness, and at the transect level for juvenile density, and lower variance was seen at larger scales (reefs and regions). The variance component contribution from each scale likely differed from other studies because of the different factors affecting the community and the different extensions of each scale used in each study. Densities (1–6.4 juvenile corals/m2) and dominant taxa found in this study agree with other studies from the Western Atlantic. Detected variability was explained by different causal agents, such as low grazing rates by herbivorous organisms, turbidity, and/or sediment suffocation and some nearby or distant localized disturbance (human settlement and a hurricane).  相似文献   

19.
The potentially negative effects of increased sedimentation on corals are well documented, whereas, the impacts upon early diagenetic processes, such as bioerosion, remain poorly understood. This study examined macroboring through image analysis of coral slabs from two high sedimentation and turbid reefs, Columbus Park and Red Buoy, within Discovery Bay, north Jamaica. Infestation of coral framework by macroborers was significant at both Columbus Park and Red Buoy for all depth zones sampled: 0–8 m (6.5 versus 8.3%), 8–16 m (11.4 versus 10.7%), and 16–25 m (6.2 versus 18.5%), with only the deepest zone significantly different (P<0.001). Bioeroding communities exhibit a shift from mainly sponge-dominated (>90%) assemblages in clear-water settings towards a greater relative importance of worms (up to 17.2%) and bivalves (up to 40.5%) with increasing sedimentation. The high infestation levels of the bivalve Lithophaga spp. offset the reduced sponge bioerosion. As a result, macroboring infestation levels are comparable to those reported from adjacent clear-water reef sites. This study indicates that macroboring of coral framework continues under environmental conditions previously inferred to be detrimental to coral growth and survival.  相似文献   

20.
Previous studies in fringing reefs of the Northern Red Sea demonstrated that the in-situ competition of corals and algae in natural assemblages is highly variable between seasons displaying fast overgrowth of corals by benthic reef algae in fall that follows close to equilibrium between both groups of organisms in summer. This may be caused by up to 5-fold higher inorganic nutrient and 6-fold higher organic nutrient concentrations in fall and winter, thereby potentially promoting algae and cyanobacteria growth with concomitant phase shift. A long term mesocosm experiment (duration: 90 days) was conducted in order to study the effect of dissolved inorganic (ammonium, phosphate, nitrate, and mix of all three) and organic (glucose) nutrient addition onto the competitive process in the dominant coral–algae assemblages of the Northern Red Sea involving branching corals of the genus Acropora and a typical consortium of benthic turf algae. Nutrients were added in 3-fold higher concentrations compared to the annual averages, and the parameters algal growth, extension of bleached area on corals, tissue colour change and chlorophyll a concentrations were monitored at regular intervals over experimental duration. This revealed that elevated ammonium concentrations and elevated organic nutrient concentrations stimulate algal growth, while coral tissue pigmentation and chlorophyll a content were significantly decreased. But only in the elevated organic nutrient treatment all effects on corals were significantly pronounced when assembled with benthic turf algae. Supplementary logger measurements revealed that O2 water concentrations were significantly lower in the elevated organic nutrient mesocosm compared to all other treatments, confirming side-effects on microbial activity. These findings indicate that organic nutrient input into coral reefs can affect physiology and metabolism of both corals and benthic turf algae. Reinforcing interaction between both groups of organisms along with involvement of microbes may facilitate phase shifts in coral reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号