首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物结构的形成不仅需要细胞与细胞之间的直接接触和相互作用,还需要能够在细胞之间扩散的信号分子在器官尺度上影响大量细胞的发育方向。扩散性成型分子的概念在20世纪由德国科学家Hans Spemann、英国科学家Lewis Wolpert和Alan Mathison Turing从不同角度提出,分别叫做斯佩曼组织中心、法国国旗学说和图灵的反应-扩散学说。后续研究证实了扩散性分子的存在和功能,为各种生物结构的形成原理提供了坚实的理论基础。  相似文献   

2.
生物结构的形成不仅需要细胞与细胞之间的直接接触和相互作用,还需要能够在细胞之间扩散的信号分子在器官尺度上影响大量细胞的发育方向。扩散性成型分子的概念在20世纪由德国科学家Hans Spemann、英国科学家Lewis Wolpert和Alan Mathison Turing从不同角度提出,分别叫做斯佩曼组织中心、法国国旗学说和图灵的反应-扩散学说。后续研究证实了扩散性分子的存在和功能,为各种生物结构的形成原理提供了坚实的理论基础。  相似文献   

3.
控制细胞命运的信息分子可以在细胞之间扩散,在较大程度上影响众多细胞的命运,是较高层次的指挥。但要形成各种具体的生物结构,例如昆虫的复眼、翅膀、触角和腿,还需要具体的相关基因完成这项工作。Hox家族和Pax家族的基因就专门负责控制此类相关基因,它们能够动员起为建造一个具体器官所需要的全部基因来完成器官的建造工作。这些基因的历史非常久远,从简单的多细胞动物到人都使用这些基因。  相似文献   

4.
生物结构的形成需要各种细胞按照类型分别聚集,这主要是通过细胞表面的钙黏蛋白实现的。形成片、管、腔等结构需要细胞具有极性;上皮表面上的的结构如纤毛、羽毛、鳞片、毛发具有方向性,也需要有关细胞具有极性。细胞的极性是由细胞内和细胞表面的一些蛋白质聚合物彼此拮抗并不对称分布而形成的。细胞之间通过Notch蛋白及其配体之间的相互作用导致彼此相邻的细胞向不同的分化方向发展。这些"成型分子"在胚胎发育过程中都发挥重要的作用。  相似文献   

5.
植物中的核质转运相关蛋白   总被引:1,自引:0,他引:1  
细胞内各个生命过程的有序进行需要生物大分子在细胞核与细胞质之间有选择、有控制地转运.而细胞核膜的存在为大分子的自由穿梭设置了屏障,因此生物大分子在细胞核与细胞质之间的转运要依赖于一些受体蛋白.输入蛋白β(importinβ)是首先从人类细胞中发现的生物大分子向细胞核输入的受体,其后相继鉴定出多个与输入蛋白β具有同源性的细胞核转运受体,命名为类输入蛋白β.这些转运受体介导的转运过程在生物有机体之间高度保守,在动物及酵母中调控核质穿梭以及各个信号过程的组分与分子机制研究较为清楚,但在植物中相对匮乏.本文在介绍细胞核转运受体共有结构特点和转运机制基础上,重点综述了植物细胞核转运受体的最新研究进展以及这些受体在植物信号转导中的重要调节作用.  相似文献   

6.
瑞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,用以检测人体健康状况。作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下,进行了该项研究。该研究团队使用酵母细胞制造出了合成电路,细胞之间可通过基因调控进行连接。  相似文献   

7.
DNA 与衰老   总被引:4,自引:0,他引:4  
衰老是生物体各种功能的普遍衰弱,以及抵抗环境伤害和恢复生理稳态的降低过程。衰老、衰老的原因、衰老的机理及衰老与疾病、衰老与死亡的关系,一直是生物及医学领域的科学家们积极探讨的问题。衰老这一极其复杂的生物学过程,涉及物理、化学、生物、医学诸领域。现已发展的近300种衰老学说分别从整体、器官、细胞、分子水平对生物衰老的机制进行了阐述。本文将从分子的角度阐述生物信息分子-DNA及其相关物质与生物衰老的关系。  相似文献   

8.
在生物体形成的过程中,不仅细胞-细胞之间的直接接触起重要作用,例如细胞分类聚集、形成片状和管状结构、相邻细胞各向不同的类型发展等,而且控制中心的细胞还会分泌出指导周围细胞生长分化的信息分子。这些信息分子能够在细胞之间移动,在比较大的尺度上影响众多细胞的命运。这些信息分子与受控细胞上的受体结合,在细胞中启动信号传递链,使这些细胞向特定的方向发展。  相似文献   

9.
生物分子是一种复杂而有序的结构,这种结构由不同的分子构件组合而成,这些分子构件既有不同的功能,又相互存在关联,而达尔文的学说对这样结构的形成不能给出合乎逻辑的解释。那么,究竟是什么推动了生物的进化,决定进化的自然原理是什么,现代人用已有的知识能否构造一个完整的可信的进化理论体系?本文就这个问题进行了探讨。  相似文献   

10.
NO存在于许多哺乳动物的组织中,作为生物信号分子,在结构上没有极性的NO分子可以不需要其他载体的运输而直接穿过细胞质膜,从其产生的源细胞扩散至邻近细胞,进行信号传导,并产生相应的生理功能.介绍了NO作为重要的生物信号分子的发现过程、转导途径及其机制,以及NO分子对相关疾病的治疗作用.  相似文献   

11.
糖生物学是以生物大分子的组成部分糖链为对象 ,研究它作为生物信息分子在多细胞生物高层次生命活动中的功能。糖生物学 (glycobiology)这一名词是 1 988年由牛津大学生化系副主任德弗克 (Raymond ADwek)教授在《生化年评》上首次提出的 [1 ] ,这标志着糖生物学这一新的分支学科的诞生。同年 ,牛津大学研制成功了 N-糖链的结构分析仪 ,并商品化。1 糖生物学的发展历程糖与蛋白质、核酸和脂类作为生物分子中的 4大物质 ,早在 1个世纪前就已被人们认识 ,但科学家对它的研究却远远滞后于核酸与蛋白质。 60年代 ,科学家发现细胞表面密布糖链 …  相似文献   

12.
真核细胞中内质网是由片状和管状两种不同形态组成的连续的生物膜结构,参与细胞内蛋白质和脂质的合成以及钙离子稳态的调控等。内质网通过蛋白-蛋白及蛋白-脂质的相互作用与多种膜性细胞结构建立膜接触位点,进行物质的交换、信号转导、膜动态性调控等生理活动。内质网与膜性细胞结构互作的缺陷也会引发许多人类重大疾病。该文介绍了内质网与一系列膜性细胞结构接触位点形成的分子机制及其潜在功能。  相似文献   

13.
细胞膜和细胞内特异蛋白的有效定位与定性,对于了解细胞运动、移植和分化等机制及细胞之间的相互作用非常关键。原子力显微镜灵敏的力学性质在研究生物分子的相互作用和特定分子的免疫识别中得到了广泛的应用,在细胞表面的特异性分子的定位过程中,不像免疫荧光成像一样需要复杂的样品准备,更重要的是能有效地进行特异性和非特异性的识别,并对识别位点可视化。本文从分子识别、功能化探针、基于力-体积成像及与动态力学显微镜结合成像等模式方面,综述了原子力显微镜在生物应用中的识别成像。  相似文献   

14.
基因型-表现型复杂生物系统由多基因群调控,细胞发生的信号传导路径、多基因相互作用与细胞系谱定位形成生物系统的结构-图式发生遗传学,但分子、细胞和器官的结构、图式形成机理还不很清楚。复杂生物系统的图式演化是细胞的物种进化、细胞形态发育的细胞发生非线性动力学过程,包括:1)物种基因组结构内等位基因替代构成物种内基因多样性调控;2)物种间进化的基因组结构层次级别的自组织化。系统理论应用于系统生态学(Van Dyne GM.1966)、系统生理学(Sagawa K.1973)、系统心理学(Titchener EB.1992)、系统生物医学(Kamada T.1992)、系统生物学(zieglgansherger W,Tolle TR.1993)、系统生物工程与系统遗传学(Zengg:BJ.1994)的建立,以及遗传学机理的生物系统分析。细胞的基因组结构自组织化形成生物的系统发生,基因组的结构变化形成物种的适应变异,生物体结构的基因组复制与表达的细胞自组织化构成生物个体发生。基于系统遗传学的工程应用,合成生物学探索生物系统泛进化,包括人工生物体的遗传工程、基因调控和仿生智能的纳米生物机器,构成生物系统的人工引导进化。  相似文献   

15.
三维电子显微镜方法进展   总被引:3,自引:0,他引:3  
从生物样品(细胞或大分子)的电镜图象重组其三维结构的方法近年取得了重大进展,这是冷冻电镜样品制备、电镜设备、图象处理和分析方法等几方面进步的综合结果。三维电镜方法的进步和完善,使细胞和学家得以了解在复杂的细胞过程中各种相关细胞器之间的空间关系,而使分子生物学家不仅可以研究那些能够形成二维结晶的样品,并为分析具有重要生物功能但不能形成二维结晶的大分子或分子聚休物的结构提供了一种强大的手段。  相似文献   

16.
近年来,氢分子的生物医学效应引起广泛关注.氢分子极小,且具有高扩散性,不仅能透过血脑屏障,还能穿过各种细胞膜进入胞浆、线粒体、细胞核和内质网等亚细胞结构,甚至可进入生物大分子内部,与靶分子发挥作用.近期研究表明,氢分子在缓解电离辐射、缺血再灌注、心脏移植、心肺复苏术和心肺转流术等所致心脏损伤中有很好的预防和辅助治疗效果,并且副作用极小.氢分子作用的机制可能与其抗氧化、抗炎、抗凋亡及调节线粒体代谢相关,但其确切机制还需更多和更深入的研究.  相似文献   

17.
细胞中的各种分子以极高的速度向各个方向运动并以极高的频率彼此碰撞。然而在这种纷乱的环境中,细胞中的各种细微结构和生物大分子的三维结构不但能够形成并且能很好地维持,使细胞中的各种生理活动得以有条不紊地进行。形成这些有序结构的力是电荷之间的相互作用力,这些作用力又分为性质不同的2种:亲水作用力(相对固定的电荷之间"点对点"的电荷相互作用)和亲脂作用力(相对弥散、动态和"面对面"的电荷相互作用)。这2种作用力互相配合,是形成高度有序的细胞和分子结构的基础。  相似文献   

18.
本文是探讨在溶液中酶和底物分子之间相互作用力对扩散控制反应速率的影响,特别考虑到酶分子具有活性中心这一空间结构,及由它产生的力场作用,处理非球形对称扩散过程。从此可看到作用力是如何控制着底物分子的扩散及其在酶分子活性中心上定向作用,各种分子力对反应速率的影响,并且解释了一些实验结果。此外,给出了在溶液中酶-底物分子反应体系的力场等高线和浓度等高图。  相似文献   

19.
纳米科学技术是20世纪80年代末期诞生并蓬勃发展的新兴科学技术,以多学科交叉融合为特色,为物理、化学、材料和生命科学等提供新的技术手段和研究视角.纳米材料的结构及表面物理化学性质直接决定了其与生物分子、细胞、组织、器官及个体的相互作用方式,并由此产生独特的生物效应——纳米生物效应.纳米生物学是从个体、细胞及分子水平深入研究纳米生物效应、阐明其精确机制的交叉科学,现已成为极具挑战性的热点前沿领域.中国科学家在纳米生物学领域已取得一系列令国际同行瞩目的重要进展,其中纳米酶(nanozyme)的开发及应用研究是极具代表性的原创发现之一.  相似文献   

20.
细胞黏附和突触发生   总被引:1,自引:0,他引:1  
Chen G  Wu X  Tuncdemir S 《生理学报》2007,59(6):697-706
突触是神经网络中神经细胞间相互连接的基本工作单位。突触的分子构建是一个引人入胜的问题,数十年来一直吸引着科学家们的注意。冯德培和许多其他科学家早期在神经肌肉接头领域做出了开创性的研究工作。至今,神经肌肉接头仍是一个杰出的突触标本,为我们研究中枢神经系统的突触形成铺平了道路。近期的研究又有新的亮点,发现一组细胞黏附分子具有很强的突触发生作用,使中枢突触形成的分子机制更加明朗。本文综述了这些表达在非神经细胞里能引起中枢突触形成的细胞黏附分子的功能与特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号