首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、前言了解生命起源,历来是人类最关心的重要课题之一。因为只有了解了生命的过去,才能予测和开发未来。从人类文明的萌芽时期开始,人类就在这一漫长的征途中开始了艰难的探索。随着生产的发展和科学技术的进步,人们对宇宙的认识及自身的由来,即组成生命元素的起源、生化物质的演化及生命的形成,都有了新的认识。二、生命起源研究中的八个突破首先是对宇宙形成总体认识上的突破。地球是宇宙的一部分,生命是宇宙形成过程中的产物。人们对宇宙的认识,从古代的神  相似文献   

2.
生命从何而来?生物进化的原理和分子机制是什么?生物如何组装具有特定结构的分子和细胞,又如何从一个细胞生长发育为一个有规则结构的生物体?这些古老的生物学基本问题至今仍然蒙着神秘的面纱.在过去几十年中,合成生物学这门新兴交叉学科融合了生命科学、工程学、物理学与化学等诸多学科中的内容,旨在通过设计和建造新的生物元件、功能和系统,以创建在自然界中并不存在的可控方式、生物逻辑和生命系统.合成生物学的出现或许能够克服此前的技术障碍,在回答生命起源、进化、结构与功能等问题上提供新的有趣的观点;此外,它也可能改变对生命已被广泛接受的定义,从而挑战认知生命的方式.  相似文献   

3.
生物化学是研究活细胞及有机体内各种分子及其相互间化学反应的科学,即研究生命的分子基础。细胞是生物体的基本结构和功能单位,机体的众多化学反应都在细胞内进行,所以生物化学又被定义为研究活细胞的化学组成及相互反应和进程的科学,即“生命的化学”,其实它涉及了细胞生物学、分子生物学和分子遗传学等几个大的学科领域。所以,生化研究的策略和技术发展对生命科学研究特别重要。由于有关生物医学科学的相互渗透以及生化与分子生物学技术的飞速进展,近两个世纪内(1780-1970年)生物化学的发展历经了从叙述生化进入功能或分子生化的阶段。在不久的将来,许多生命科学的关键问题将在分子机制和基因水平的基础上获得解决。  相似文献   

4.
早期地球的环境变化和生命的化学进化   总被引:4,自引:0,他引:4  
生命起源是当代最大的科学疑谜之一,也是历来人类普遍关注的一个焦点。在地球上最早的生物出现之前,有机物经历了漫长而复杂的化学进化过程,称为生命的化学进化。地球上生命的化学进化与非生物部分的早期演化过程,是密切地相互关联、相互作用并相互制约的。文章着重阐述与生命的化学关系最为密切的冥古宙和太古宙的地球演化历史,指出这两个阶段所形成的还原性原始大气和古海洋条件在生命的化学进行中起了极其重要的作用,并且从宇宙形成、太阳系演化和地球环境早期演化的角度,探讨地球生命的化学进化历程;以地球形成初期发生了一系列复杂的有机化学反应过程,由无机分子生成生物小分子,再进一步生成生物大分子,直至最后产生原始细胞。此外,文章评述当前国际上最流行的生命化学进化学说,对早期地球的化学进化是发生在地球表面的原始海洋、粘土矿物、火山喷发等,或是来源于地球之外的宇宙空间进行了综合的阐述。  相似文献   

5.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

6.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

7.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。本文从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

8.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

9.
光合作用是地球上绝大多数生物赖以生存的生命活动。结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌。氢醌分子中的高能电子再流过一条位于生物膜上的"电子传递链",其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度。氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量。叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用。光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了。叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来。光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用。本文从分子角度介绍光合作用中光反应的机制及其形成的过程。  相似文献   

10.
几种可能的答案地球上生命怎样来的呢?这里有几种可能的答案:(1)生命没有起源。物质和生命永恒存在。宇宙间任何星球变化到可以居住生物时,生命的“种子”便由宇宙的某处移过来。因此,地球上的生命是从其他星球而来的。(2)生命在超自然因素的作用下在地球上出现。这是神造说。(3)地球上生命是通过地球表面上的化学过程,通过物质的逐步变化发展,在特殊条件下逐渐发生的。恩格斯在“自然辩证法”里批判了前两种说法,主张第三种观点。现代科学支持恩格斯关于生命起源的辩证唯物主义观点。  相似文献   

11.
RNA是既可携带遗传信息又可发挥催化功能的生物大分子,被认为是生命起源的最初分子形式.从病毒颗粒到各种动植物细胞,形态、功能和大小各异的RNA分子均在复制、转录以及翻译等遗传信息表达的过程中发挥不可或缺的调控作用,构成了生命活动的物质基础.近十年来,海量非编码RNA的发现、大量RNA化学修饰的鉴定,为我们揭示了一个异常...  相似文献   

12.
细胞是生命的基本单位。细胞很小,却被称为复杂性巨大的微缩奇观。细胞生物学研究分3个层次:显微水平、亚显微水平和分子水平.它是一切生命科学研究的基础,即一切生命现象都要从细胞中获得答案。关于细胞的结构与功能的教学组织,本文重点探讨2方面内容:一是细胞学说的建立;二是细胞膜的结构与功能。生物学新课程标准提出的具体要求是:分析细胞学说建立的过程:使用显微镜观察多种多样的细胞:简述细胞膜系统的结构与功能。  相似文献   

13.
席德慧 《生命科学》2003,15(1):39-41,25
分子伴侣与病毒生命活动密切相关,从病毒复制的起始、转录的进行、翻译的完成到病毒粒子的装配成熟,甚至病毒在宿主体内的转运都有分子伴侣的参与。随着病毒与分子伴侣相互关系研究的深入,产生了抗病毒的又一可能途径。  相似文献   

14.
《生命科学》2008,20(5):729-733
神经科学研究也是跨学科的前沿交叉研究领域,研究神经系统发育、进化、功能以及出现的功能紊乱。神经科学研究可在不同水平开展:从功能角度,按照自下而上的思路研究,从分子、遗传、细胞、环路到系统、行为水平。可以反过来按照自上而下的思路研究神经科学,从行为到环路、细胞水平。研究人员都是从这两方面来研究,可能更多是从白下而上来研究。从哪个角度开展研究是更有效的途径;如何更好地桥接这两方面的内容,这些都是非常值得讨论的重要问题。  相似文献   

15.
哺乳动物精卵相互作用的分子机制的研究进展   总被引:1,自引:1,他引:0  
哺乳动物受精是由一系列有序步骤组成的复杂细胞相互作用过程组成,最终导致精卵质膜融合形成受精卵。近来运用基因组学和蛋白质组学技术在哺乳动物精子和卵子表面鉴定出若干可能参与精卵质膜粘附与融合过程的蛋白分子,并对其结构和生物学功能进行了研究,但精卵识别与融合的分子机理仍然不清楚。综述了与精卵识别和融合有关的蛋白的最新研究进展,为进一步研究精卵相互作用的分子机制提供参考。  相似文献   

16.
众所周知,神经元的轴突和树突在分子组成、形态和功能上都存在巨大差异。神经元维持自身轴突树突形态、功能分化的性质被称为神经元的极性。极性的建立不仅是神经元行使自身功能的必要条件,也是神经细胞之间形成正确回路联系的前提。  相似文献   

17.
<正> 前言1.研究脂质体的工作简介蛋白质、核酸、脂类是组成生命物质的三种最基本的成份,对其结构及功能的研究早已为人们所熟知。相形之下,脂类分子的聚集体形成的某些结构及生物学功能可能长期未受到重视。实际上早在一百多年前Virchow(1884)已经注意到髓磷脂可以形成脂质体和螺旋。Lehma(1904)等人八十年前就描述过所见到的脂质体结构。本世纪三十年  相似文献   

18.
生命系统与非生命系统的差别是认识生命本质的一个重要问题.本文提出了对应关系的概念及总的对应式,认为对应关系是生命系统分子间的基本关系,决定了生命系统的主要性质,是生命系统与非生命系统的重要差别. 对应关系按照分子集合的数量可分为简单对应关系和复杂对应关系. 按照功能的不同可分为对应转换、对应催化、对应转运、对应转导、对应免疫等多种对应关系. 对应关系通过功能上的相互作用还形成了相互协作的具有调控作用的对应关系网络.本文重点介绍了前4种基本的对应关系及相应的对应式,并就对应关系的形成与蛋白质多样性的关系、对生命系统的意义及存在的其它问题进行了初步的讨论.  相似文献   

19.
骨肉瘤好发于青少年,是一种发病率、致残率都很高的恶性肿瘤,而且预后差、易转移,严重威胁青少年的身心健康。骨肉瘤的发生、发展及转移是多因素、多步骤、多阶段和多基因改变的过程,涉及与生命活动相关的所有生物大分子,尤其是生物分子的异常调节。本文就骨肉瘤发生发展的分子机制进行探讨。  相似文献   

20.
生物体生命活动是一个复杂的、系统性的过程,是宏观与微观、环境与机体、时间与空间的综合作用结果。动植物的生命活动是机体的整体活动,随着研究的深入,科学家已经从器官、组织、细胞水平研究,进入核酸、蛋白质等大分子物质水平研究。微生物的生命活动相对比较简单,每个细胞可以构成独立生命单元,进行生长、繁殖和发挥功能,但是微生态研究常从整体上探讨微生物功能。随着分子生物学的快速发展,生物学家从纵向研究的角度,围绕某个生物表型或功能,解释了发挥作用的细胞、功能基因、调控基因、信号分子、修饰分子等,为揭示生命活动提供了大量可靠的科学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号