首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Antibodies specific for α-N-acetyl-β-endorphins have been prepared by injecting into rabbits either α-N-acetyl-β-endorphin(1-31) or [α-N-acetyl, ε-acetyl-Lys9]-β-endorphin(1-9) linked by carbodiimide to bovine thyroglobulin. Both antisera were used to develop specific radioimmunoassays for α-N-acetyl-β-endorphins. The radioimmunoassays were used to measure α-N-acetylated β-endorphins in extracts of pituitary regions from different species. By comparison of the amounts of total β-endorphin and α-N-acetyl-β-endorphin immunoreactivity, a relative ratio of β-endorphin acetylation was obtained. The relative acetylation of β-endorphin was highest in rat posterior-intermediate lobe extracts (>90%). Beef and monkey intermediate lobes had a lower degree of acetylation (53 and 31%, respectively). Anterior lobe extracts from all three species contained low amounts of acetylated β-endorphin. Human pituitary extracts did not contain acetylated β-endorphins. By the use of cation exchange and high performance liquid chromatography, six different acetylated derivatives and fragments of β-endorphin were resolved in extracts of rat posterior-intermediate pituitaries. Two of these peptides corresponded to α-N-acetyl-β-endorphin(1-31) and -(1-27). One acetylated β-endorphin fragment had the same size as α-N-acetyl-β-endorphin(1-27) but was eluted earlier from the cation exchange column. This peptide had full cross-reactivity with antibodies directed against the middle and amino-terminal parts of β-endorphin. Compared with α-N-acetyl-β-endorphin(1-27), it had much less cross-reactivity with antibodies directed against the COOH-terminal part of β-endorphin, suggesting that it was a COOH-terminally modified derivative of β-endorphin(1-27). The remaining N-acetylated β-endorphin derivatives were eluted even earlier from the cation exchange column. The majority of these fragments were slightly larger in size than y-endorphin, i.e., β-endorphin(1-17), but smaller than β-endorphin(1-27). They had full cross-reactivity in an amino-terminally directed β-endorphin radioimmunoassay and a greatly diminished cross-reactivity with antibodies to the middle region of β-endorphin.  相似文献   

2.
Acetylation at the α-amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide β-endorphin, α-N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for α-N-acetyl-β-endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like β-endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to β-endorphin, suggest that residues 14–24 exhibit α-helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the α-amino terminal of β-endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, β-endorphin and the α-N-acetylated peptide behave very similarly with respect to calmodulin association.  相似文献   

3.
Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1–3,Arg4,d-Ala8]Dyn A-(1–11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J Med Chem 2002;45:5617–5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84–89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB?=?3.2?nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB?=?27.5?nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.  相似文献   

4.
Abstract: Intense immunohistochemical staining of the intermediate lobe of the pituitary was observed by using an antiserum raised against synthetic dynorphin(1-13) treated with a water-soluble carbodiimide (CDI). Subsequent studies showed that the immunostaining was blocked by preincubation of the antiserum with acetylated derivatives of both β-endorphin and dynorphin(1-13) as well as by CDI-treated dynorphin(1-13), but only weakly by authentic dynorphin(1-13). Neither nonacetylated β-endorphin nor any other fragments of the ACTH/endorphin precursor blocked the immunostaining of the intermediate lobe. Analysis of the CDI-treated dynorphin(1-13) used as an antigen showed that most of the peptide was acetylated at primary amino groups. CDI treatment of dynorphin(1-13) results in the formation of an acetyl derivative because the commercially available peptide is supplied as the acetate salt. The antibodies responsible for the intermediate lobe staining were isolated by affinity chromatography, using a column containing partially purified intermediate lobe extract linked to an affinity resin and a radioimmunoassay (RIA) was developed with CDI-treated dynorphin(1-13) used as a trace and as a standard. Competition studies showed 0.5-1% cross-reactivity with α-N-acetyl β-endorphin(1-31), α-N-acetyl β-endorphin(1-27), and totally acetylated β-endorphin(1-31). Nonacetylated β-endorphins did not cross-react. Posterior-intermediate lobe extracts from rat and beef were fractionated by gel filtration. Rat posterior-intermediate lobe extracts were also fractionated by cation-exchange chromatography. Fractionated extracts were analyzed by RIAs for β-endorphin, CDI-treated dynorphin(1-13), and authentic dynorphin(1-13). The results suggested that the peptides responsible for the intermediate lobe staining were mainly four different derivatives of β-endorphin bearing an acetyl group at the amino terminus. No immunostaining was seen in the posterior and anterior lobes of the pituitary. This suggests that the intermediate lobe is the main source of acetylated β-endorphins in the pituitary.  相似文献   

5.
The opioid peptide (porcine) β-endorphin has been tritiated using reductive methylation to prepare a derivative containing mainly [3H]dimethyllysine. The tritiated β-endorphin has a specific activity of 9.8 Ci/mmol and is stable for an extended period of time. The labeled peptide binds reversibly to rat brain membrane preparations with a dissociation constant of 0.4 ± 0.1 nM and a receptor content of 23 ± 2 pmol/g brain. Under the conditions used, there is evidence for only one class of receptors. The technique employed for tritium labeling of β-endorphin should also be applicable to various other peptides including α-endorphin, γ-endorphin, and C′-fragment that have been found in brain and pituitary.  相似文献   

6.
The differently acetylated subfractions of histone H4 isolated from cuttlefish testis and from calf thymus were separated by ion exchange chromatography on sulfopropyl-Sephadex, using a shallow linear gradient of guanidine hydrochloride in the presence of 6 M urea at pH 3.0. The tetra-, tri-, di-, mono-, and nonacetylated forms of cuttlefish H4 represent 2, 6.4, 18, 32.2, and 41.4% of the whole histone, respectively. The di-, mono-, and nonacetylated forms of calf H4 represent 11.7, 41.3, and 44% of the whole histone, respectively. The acetylation sites were determined in each subfraction by identification of the acetylated peptides. In each acetylated H4 subfraction, the acetylated tryptic peptides were identified by peptide mapping and amino acid analysis with reference to the peptide map of nonacetylated H4. In cuttlefish testis H4, lysine 12 is the main site of acetylation in the monoacetylated subfraction; lysines 5 and 12 are found acetylated in diacetylated H4; lysines 5, 12, and 16 are found acetylated in triacetylated H4. From these results and the stoichiometry of the different H4 subfractions, it can be concluded that lysine 5 is acetylated after lysine 12. In calf thymus, lysine 16 is the only site of acetylation in the monoacetylated subfraction. All the diacetylated forms are acetylated in lysine 16, the second site of acetylation being, in decreasing order, lysine 12, lysine 5, or lysine 8. These observations suggest that acetylation occurs in a sequential manner. Moreover, the sites of acetylation depend upon the biological event in which acetylation is involved.  相似文献   

7.
Proenkephalin A-derived peptides are known to occur in the gut, but their precise identity is uncertain. We report here the isolation of N-terminally extended forms of Met-enkephalin Arg6Gly7Leu8 from porcine upper digestive tract monitored by radioimmunoassay. A single major form was identified in pyloric antral muscle and mucosa, but in the duodenum two major forms were detected. Microsequence analysis together with immunological data revealed that the antral mucosal peptide and the most acidic duodenal peptide had identical amino-acid sequences, corresponding to a 5.3 kDa peptide terminating in Met-enkephalin Arg6Gly7Leu8. The data indicate that high-molecular-weight peptides may constitute a major proportion of gut opioid peptide immunoactivity.  相似文献   

8.
The molecular forms of opioid peptides in human adrenal have not been well characterised. These peptides are predominantly derived from the proenkephalin A precursor, which has the sequence of Met-enkephalin(Arg6,Phe7) as its carboxyl terminus. We have looked in the present study at the subcellular distribution and the molecular form of immunoreactivity to this sequence in post-mortem human adrenal medulla and in phaeochromocytoma. In the human adrenal homogenates, the immunoreactivity distributes on a sucrose gradient in a manner consistent with localisation in chromaffin granules. On chromatography, the immunoreactivity from adrenal medulla is predominantly in the heptapeptide form; the intermediate (3000–4000) molecular weight material is only a minor component of immunoreactivity, in contrast to bovine tissue extracts where this is the major form of immunoreactivity. In the phaeochromocytoma extracts, the heptapeptide sequence again predominates over a minor amount of intermediate sized material. The results are discussed in terms of post-mortem changes, precursor processing and the function of the adrenal medulla.  相似文献   

9.
Summary Previous immunochemical investigations have demonstrated various opioid peptides in the pancreas. However, controversies exist related to the cellular localization of these peptides in the endocrine pancreas. Therefore, the guinea pig endocrine pancreas was immunohistochemically investigated for the presence of opioid peptides derived from pro-dynorphin, pro-enkephalin or pro-opiomelanocortin. Immunoreactivities were demonstrated on serial semithin sections by the peroxidase anti-peroxidase technique. In routinely immunostained sections, immunoreactivities for dynorphin A and -neo-endorphin were localized in pancreatic enterochromaffin cells, but not in islet cells. Immunoreactivity for Met-enkephalin was confined exclusively to B-cells and was localized only in some secretory granules. However, pre-treatment of semi-thin sections with trypsin and carboxypeptidase B led to a marked increase of Met-enkephalin immunoreactivity in B-cells. In addition, immunoreactivities for Met-enkephalin-Arg-Gly-Leu and bovine adrenal medulla dodecapeptide could be demonstrated in B-and A-cells, and -endorphin immunoreactivity was localized in A-cells. In no case, however, were immunoreactivities detected for bovine adrenal medulla docosapeptide, peptide F, corticotropin, melanotropin or dynorphin 1–32. The immunohistochemical findings indicate that opioids of different peptide families are present in the guinea pig endocrine pancreas. Since several opioid peptides of the corresponding pro-hormones could be demonstrated in the reference organs but not in the pancreas, it is concluded that the biosynthetic pathways of the respective precursors are different from those in the adrenal medulla or in the pituitary.  相似文献   

10.
Summary The present study was designed to explore the effects of opioid peptides on the lytic activity of spleen cells from intact nude mice or nude mice bearing human ovarian cancer cells (KF). When the spleen cells from intact nude mice were incubated with various concentrations of opioid peptides, the ability of the spleen cells to lyse the KF cells was significantly stimulated between 0.05 nM and 50 nM concentrations of all opioid peptides used in this study. The degree of stimulation was most marked at 5 nM opioid peptides and the most marked stimulatory effect was obtained by -endorphin. On the other hand, the lytic activity of spleen cells from nude mice challenged with the KF cells was about two-fold higher than that of intact nude mice, suggesting that spleen cells from nude mice challenged with KF cells have KF-cell-specific cytotoxicity. Even if the spleen cells were incubated with any concentration of -endorphin or [Met]enkephalin indicated, the lytic activity remained unchanged. In contrast, only -endorphin resulted in a significant increase of the lytic activity between 0.5 nM and 50 nM. These results suggest that opioid peptides play a crucial role in immune surveillance mechanisms.  相似文献   

11.
Acid extracts of the posterior pituitary of the amphibian, Xenopus laevis, were analyzed with two heterologous region specific β-endorphin RIAs. Following gel filtration chromatography and cation exchange chromatography four peaks of immunoreactivity were detected. All four peaks were detected with a N-acetyl specific β-endorphin RIA. Peak I represented 92% of the total immunoreactivity isolated following cation exchange chromatography. This peak had a net positive charge at pH 2.5 of +1 and an apparent molecular weight of 1.4 Kd. Following reverse phase HPLC, Peak I fractionated into two peaks: Peak Ia and Peak Ib. Both peaks were detected with the N-acetyl specific β-endorphin RIA and a Met-enkephalin RIA, however, neither peak co-migrated with either Met-enkephalin or N-acetyl-β-endorphin(1–16). At present it is not clear whether Peak I is derived from pro-opiomelanocortin or one of the other opioid polyproteins. Peaks II, III, and IV represented 8% of the total immunoreactivity recovered following cation exchange chromatography. These peaks had net positive charges of +3, +4, and +5, respectively, and apparent molecular weights of 2.8, 3.2, and 3.5 Kd, respectively. These apparently N-acetylated β-endorphin-sized forms are minor end products of the pro-opiomelanocortin biosynthetic pathway.  相似文献   

12.
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI–MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.  相似文献   

13.
At maximally effective concentrations, the opiate peptides β-endorphin (240 nm) and Met-enkephalin (1400 nM) virtually abolished the contractions induced by a maximally effective concentration of 60 nM neurotensin (NT), either in the longitudinal smooth muscle strip or in the intact segment of guinea-pig ileum. This inhibitory effect was concentration-dependent and was totally blocked by naloxone at 100 nM. In contrast a maximally effective concentration of somatostatin (60 nM) partially inhibited (50–60%) the contraction induced by 60 nM NT in either smooth muscle preparation. Somatostatin inhibition was concentration-dependent and was not blocked by naloxone at 100 nM. Atropine at 100 nM inhibited by 50% the contractions induced by 60 nM NT in the intact segment of guinea-pig ileum. The remaining contraction was abolished by β-endorphin and Met-enkephalin and partially reduced by somatostatin. Our results confirm that NT-induced contractions in the guinea-pig ileum are neurogenic and involve a cholinergic as well as a non-cholinergic component. Furthermore, we show that the release of mediators from both components  相似文献   

14.
Prior calculations based on ECEPP (Empirical Conformational Energies for Peptides Program) of the low energy minima for cholecystokinin (CCK) and Met-enkephalin have demonstrated that significant structural features of these two peptides are identical. This result suggested the possibility that Met-enkephalin, as well as other enkephalin analogues of similar structure, could associate with receptors for CCK. To test this theoretical result, we examined the ability of Met-enkephalin and its analogues to bind to peripheral CCK receptors in the rat gastrointestinal tract; in particular, we measured the ability of the opiate peptide to inhibit the effects of CCK in a physiological assay system which we have previously characterized: CCK-induced contraction of the isolated rat pyloric sphincter. We find that Met-enkephalin is an antagonist of the CCK-8-induced contraction, with a IC50 of 110 nM. Furthermore, antibodies against CCK were found to cross-react with Met-enkephalin and its analogues in a manner which suggests a distinct structure-activity relationship. These experimental results strongly support the theoretical results of conformational analysis showing structural similarity between enkephalin and CCK. They further suggest that enkephalins could modulate the response of CCK systems under physiological conditions.  相似文献   

15.
An aminopeptidase solubilized and isolated from rat brain membranes selectively splits the Tyr1-Gly2 peptide bond of Met-enkephalin. βh-Endorphin, which is apparently resistant to the aminopeptidase, inhibited the action of this peptidase on Met-enkephalin degradation competitively; the Ki value was 11.5 μM. Arg0h-endorphin was found to be 10 times more potent than βh-endorphin. From further structure-activity data it is concluded that the N-terminal amino group and some residues within region 18–31 of the β-endorphin structure are cooperatively involved in binding to the active site of the aminopeptidase.  相似文献   

16.
Acetylation at the -amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide -endorphin, -N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for -N-acetyl--endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like -endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to -endorphin, suggest that residues 14–24 exhibit -helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the -amino terminal of -endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, -endorphin and the -N-acetylated peptide behave very similarly with respect to calmodulin association.Portions of this work are in partial fulfillment of the requirements for the Ph.D. degree from Vanderbilt University.  相似文献   

17.
The monoclonal antibody 6-11B-1 recognises specifically the acetylated form of alpha-tubulin. The acetylation event occurs on a unique lysine residue, lysine 40. Using 6-11B-1, acetylated alpha-tubulin was detected in myxamoebae but not plasmodia of Physarum polycephalum. Following chemical acetylation plasmodial alpha-tubulin was detected by 6-11B-1. The monoclonal antibody KMP-1 recognises certain Physarum alpha-tubulin isotypes but only in non-acetylated form. Whilst recognising all the non-acetylated fraction of myxamoebal alpha-tubulin only a proportion of plasmodial alpha-tubulin was recognised by KMP-1. Peptides were synthesised corresponding to the acetylation domains (containing lysine 40) of myxamoebal alpha-tubulin and the inferred acetylation domains of two plasmodial-specific alpha-tubulin isotypes. The only difference between the two peptides was at a single residue corresponding to amino acid 44 in the polypeptide. Tyrosine was present in myxamoebal alpha-tubulin and glycine was present in the plasmodial specific peptides; the peptides are referred to as the Tyr44 and Gly44 peptides respectively. Both peptides in acetylated form blocked 6-11B-1 reactivity towards acetylated myxamoebal alpha-tubulin. The Tyr44 but not the Gly44 peptide blocked KMP-1 reactivity towards non-acetylated myxamoebal alpha-tubulin. Tyrosine at position 44 is not found in any other known alpha-tubulin. Thus a unique antigenic determinant exists in certain Physarum alpha-tubulin isotypes, close to the acetylation site at lysine 40. This antigenic determinant forms part of the KMP-1 recognition epitope and explains the unique isotype selectivity of this monoclonal antibody.  相似文献   

18.
The peptide TPLVTLFK (coined by the authors “octarphin”), corresponding to the amino acid sequence of β-endorphin fragment 12–19, and its analogs (LPLVTLFK, TLLVTLFK, TPLVLLFK, TPLVTLLK, TPLVTLFL) were synthesized. The peptide octarphin was labeled with tritium (specific activity, 28 Ci/mol) and its binding to the rat brain cortex membranes and mouse peritoneal macrophages was studied. [3H]Octarphin was found to bind to brain membranes and macrophages with high affinity (K d = 2.6 ±0.2 and 2.3 +0.2 nM, respectively) and specificity. The specific binding of [3H]octarphin with rat brain membranes and mouse macrophages was inhibited by unlabeled β-endorphin (K i = 2.4 +0.2 and 2.7 +0.2 nM, respectively) and selective agonist of nonopioid β-endorphin receptor synthetic peptide immunorphin (SLTCLVKGFY) (K i = 2.9 +0.2 and 2.4 +0.2 nM, respectively) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin and [Met5]enkephalin (K i > 10 mM). Inhibiting activity of unlabeled analogs of octarphin was more than 100 times lower than that of the unlabeled octarphin. Octarphin was shown to stimulate activity of mouse immunocompetent cells in vitro: at the concentration of 1 nM it enhanced the capacity of peritoneal macrophages to digest bacteria Salmonella typhimurium virulent strain 415 in vitro. Thus, octarphin is a selective agonist of nonopioid (insensitive to the opioid antagonist naloxone) β-endorphin receptor of rat brain cortex membranes and mouse peritoneal macrophages.  相似文献   

19.
Abstract: A specific and sensitive radioimmunoassay procedure for Metenkephalin[Arg6,Phe7] which allows its measurement in regions of the rat brain is described. The antiserum was raised against the methionine sulphoxide derivative of the peptide, and all samples and standards were oxidized with hydrogen peroxide prior to use in the assay with chloramine T-oxidized 125I-labelled Met(O)-enkephalin[Arg6,Phe7]. The only significant cross-reactivity was 30% with the reduced heptapeptide Met-enkephalin[Arg6,Phe7]. The assay showed less than 0.15% cross-reactivity with fragments of the heptapeptide and with leucine-enkephalin-containing peptides. Acid acetone extraction of rat striatum followed by Sephadex G-50 chromatography and reverse-phase high pressure liquid chromatography showed that essentially all immunoreactivity co-chromatographed with Met-enkephalin[Arg6,Phe7]. This confirmed the specificity of the assay and showed that the striatum does not contain a high concentration of larger molecular weight forms with the heptapeptide at the COOH terminus. Distribution of the heptapeptide followed that of methionine enkephalin, with highest concentrations in the globus pallidus, intermediate levels in caudate-putamen and hypothalamus, and low levels in cortex and cerebellum.  相似文献   

20.
Intraventricular administration of the endogenous opioid peptide β-endorphin produces a profound state of immobilization in rats characterized by the absence of spontaneous movement, loss of the righting response and extreme generalized muscular rigidity. The immobility syndrome induced by the opioid peptides β-endorphin and D-Met2-Pro5-enkephalinamide was compared with the behavioral profile prodced by subcutaneous and intraventricular administration of the opiates, morphine, methadone and etonitazene. The results indicate a close similarity between the pattern of effects caused by the opiates and opioid peptides. The immobility syndrome could also be produced by injection of β-endorphin into the ventromedial periaqueductal gray, but not into the caudate, globus pallidus, amygdala or dorsolateral periaqueductal gray. The resemblance between the opiate- and β-endorphin-induced profiles suggests that their effects are mediated through common mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号