共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the liver, hormonal control of glycogen metabolism allows for rapid release and uptake of glucose from the circulation, providing a reserve of glucose that can be utilised by other organs. Traditionally, cellular glycogen storage has been detected using Periodic acid Schiff (PAS) staining of histopathology samples or a biochemical assay. Colorimetric measurement of glycogen content using PAS staining is hard to quantify whilst biochemical techniques give limited information about events such as cytotoxicity or allow analysis of hepatic heterogeneity. Here, we describe the development of an imaging based method to quantify glycogen storage in 96-well cultures of primary rat hepatocytes using the inherent fluorescence properties of the Schiff reagent. PAS-stained hepatocytes were imaged using an automated fluorescent microscope, with the amount of glycogen present in each cell being quantified. Using this technique, we found an increase in glycogen storage in response to insulin (EC50 = 0.31 nM) that was in agreement with that determined using biochemical quantification (EC50 = 0.32 nM). Furthermore, a dose dependent increase in glycogen storage was also seen in response to glycogen synthase kinase inhibitors and glycogen phosphorylase inhibitors. This technique allows rapid assessment of cellular glycogen storage in response to hormones and small molecule inhibitors. 相似文献
2.
Annie Husson Mimouna Bouazza Catherine Buquet Rene Vaillant 《In vitro cellular & developmental biology. Plant》1984,20(4):314-320
Summary Fetal rat hepatocytes were isolated and cultured in primary culture to investigate activity changes of arginase under defined
conditions. In hormone-free medium, cultured cells maintained the enzyme activity at levels equal to that of freshly isolated
cells for at least 4 d. Arginase activity could be induced by dexamethasone in hepatocytes isolated from 16.5-d-old fetuses
although cells were competent to respond to glucagon only at the stage of 18.5 d. The combination of the two hormones induced
greater levels of arginase activity than the individual compounds. These findings indicate that glucocorticoid and glucagon
receptors appear early and sequentially before birth and reveal that cultured fetal hepatocytes provide a suitable system
for the investigation of the role of hormones in the initiation of enzyme synthesis.
This work was supported by the Institut National Scientifique et de la Recherche Médicale through Grant 85.80.117. 相似文献
3.
Hormone and substrate regulation of glycogen accumulation in primary cultures of rat hepatocytes. 总被引:1,自引:0,他引:1 下载免费PDF全文
Hormonal and substrate regulation of hepatic glycogen accumulation was evaluated in primary cultures of hepatocytes prepared from 1-day-fasted rats. Hepatocytes were cultured in media containing 5 mM-glucose and 10 mM-lactate and then exposed to 100 nM-dexamethasone for 4 h before an increase in glucose concentration and the addition of insulin. When this protocol was used to mimic the post-prandial state in vivo, net glycogen accumulation (over 2 h) and insulin (10 nM) effects were linear at physiological (5-10 mM) and supraphysiological (20-30 mM) glucose concentrations. To define the role of substrates in glycogen accumulation, hepatocytes were incubated in a buffered salt solution containing 10 mM-glucose and either 10 mM-lactate or 5 mM-glutamine, or both. In the absence of hormones, net glycogen accumulation was increased by 59%, 83%, and 127% by the addition of lactate, glutamine, and lactate plus glutamine respectively, compared with incubations with glucose alone, and 6-fold in the presence of substrates, insulin and dexamethasone. Labelling with [3-3H]glucose and [U-14C]glucose showed that in the absence of hormones approx. 50% of glycogen formation came from glucose via the direct pathway and the remainder from glucose via the indirect pathway or from non-glucose precursors, or both. Insulin-dependent enhancement of glycogen formation is through stimulation of both the direct and indirect pathways, and dexamethasone-dependent stimulation occurs through stimulation of both these pathways of glycogen formation from glucose as well as from non-glucose precursors. Lactate serves as a gluconeogenic C3 precursor for the observed enhanced glycogen formation, whereas glutamine-dependent enhancement of glycogen accumulation occurs primarily through a stimulation of the direct and indirect pathways of glycogen formation from glucose. 相似文献
4.
Insulin regulation of glycogen synthase phosphatase in primary cultures of hepatocytes 总被引:2,自引:0,他引:2
Activation of glycogen synthase in the perfused rat liver is defective in severely diabetic rats. In the present study, activation of glycogen synthase by glucose and increased incorporation of [14C]glucose into glycogen by insulin are defective in hepatocytes isolated from alloxan diabetic rats. Acute activation of glycogen synthase in hepatocytes isolated from diabetic rats was restored by treatment of the rats with insulin in vivo. Restoration of synthase activation was not achieved by incubation of hepatocytes in the presence of insulin in vitro for up to 12 h. When isolated hepatocytes from diabetic rats were placed in primary culture in a serum-free defined medium over a 3-day period, glycogen synthesis was partially restored by cortisol and triiodothyronine and dramatically increased by insulin. Concomitant with restoration of [14C]glycogen synthesis was an insulin-mediated increase in glycogen synthase I and synthase phosphatase activity. Restoration of regulation of glycogen synthesis in primary cultures of hepatocytes from diabetic rats by insulin required the presence of cortisol and triiodothyronine. Primary cultures of hepatocytes from normal rats did not require triiodothyronine for insulin to effect glycogenesis over a 3-day period. These data demonstrate that insulin acts in a chronic manner in concert with other hormones to control synthase phosphatase activity, an effect which may be influencing acute control of hepatic glycogen synthesis. 相似文献
5.
Enhancement of glycogen concentrations in primary cultures of rat hepatocytes exposed to glucose and fructose. 下载免费PDF全文
Glycogen synthesis in isolated hepatocytes can occur from glucose both by a direct mechanism and by an indirect process in which glucose is first metabolized to C3 intermediates before use for glycogenesis via gluconeogenesis. We studied the incorporation into glycogen of glucose and the gluconeogenic substrate, fructose, in primary cultures of hepatocytes from fasted rats. In the presence of insulin, both glucose and fructose promoted net deposition of glycogen; however, fructose carbon was incorporated into glycogen to a greater extent than that from glucose. When glucose and fructose were administered simultaneously, the glycogenic utilization of glucose was stimulated 2-3-fold, and that of fructose was increased by about 50%. At constant hexose concentrations, the total incorporation of carbon, and the total accumulation of glycogen mass, from glucose and fructose when present together exceeded that from either substrate alone. Fructose did not change the relative proportion of glucose carbon incorporated into glycogen via the indirect (gluconeogenic) mechanism. The synergism of glucose and fructose in glycogen synthesis in isolated rat hepatocytes in primary culture appears to result from a decrease in the rate of degradation of newly deposited glycogen, owing to (i) decreased amount of phosphorylase a mediated by glucose and (ii) noncovalent inhibition of residual phosphorylase activity by some intermediate arising from the metabolism of fructose, presumably fructose 1-phosphate. 相似文献
6.
《Cell differentiation and development : the official journal of the International Society of Developmental Biologists》1988,25(2):109-118
Changes in the expression of two isoenzymic forms of pyruvate kinase in fetal hepatocyte cultures derived from 15- and 19-day gestation rats are studied by immunocytochemical localization of the respective antigens. Initially, in cultures established from 15-day gestation rats only the ‘embryonic’ form of the enzyme (M2-PK) is detected in all cells. Cells which stain positively for the liver specific form of the enzyme (L-PK) are not observed. After 2 days' culture, a significant number of cells have become positive for L-PK. All the positive cells have a morphology which is typical of liver parenchymal cells. However, the majority of parenchymal cells remain negative for L-PK while retaining M2-PK. In contrast, all cells which display a fibroblastic morphology, as well as clear epithelial cells are M2-PK positive, but L-PK negative. In 5-day-old cultures, all hepatocytes have become L-PK positive. Hepatocytes derived from 19-day gestation rat liver stain positively for L-PK on day 1 of culture in agreement with previously published biochemical data. A minor population of negative cells is non-parenchymal in appearance. All parenchymal cells are negative when the culture is stained with M2-PK specific antibody. Five days after the culture is established, many non-parenchymal cells are present. Such cells are L-PK negative and M2-PK positive and their presence in cultures derived from both 15- and 19-day gestation rats explains the persistence of M2-PK. This study reveals that during enzymic differentiation of fetal hepatocytes, all immature hepatocytes are initially capable of expressing M2-PK while they do not produce L-PK. During culture, a sub-population of these cells initiates synthesis of L-PK, indicating that only a fraction of the cells differentiate. At the same time, hepatocytes which do not stain for M2-PK appear, which suggests that cells which initiate L-PK synthesis have ceased to make M2-PK. Eventually all hepatocytes are L-PK positive and M2-PK negative, indicating that a switchover in expression of the pyruvate kinase isoenzymes has occurred. 相似文献
7.
8.
Transport system a is not responsive to hormonal stimulation in primary cultures of fetal rat hepatocytes 总被引:2,自引:0,他引:2
M E Handlogten M S Kilberg 《Biochemical and biophysical research communications》1982,108(3):1113-1119
Hepatocytes isolated from rat fetuses have been shown to contain Systems A, ASC, and N for the Na+-dependent transport of neutral amino acids and the activity of each of these systems is significantly higher in the fetal cells than those of an adult (J. Vadgama and H.N. Christensen, personal communication). In contrast to the hepatocytes isolated from adult or newborn animals, the fetal cells do not respond to insulin, glucagon, or dexamethasone with an increase in System A-mediated transport. The System A activity present in the fetal hepatocytes does undergo adaptive regulation in a manner similar to that seen for adult cells, however, the same is not true for System N. Like the cells isolated from the adult rats, the hepatocytes isolated from fetal liver tissue exhibit an increase in Na+-independent transport with time in culture. 相似文献
9.
10.
《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,678(1):91-97
Developmental increase of tryptophan oxygenase (L--tryptophan: oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11) was studied using hepatocytes of neonatal rats in primary culture. Hepatocytes from rats of 2–30-days-old were isolated and cultured for 2 days. In cultured hepatocytes of 2-day-old rats, tryptophan (2.5 mM), dexamethasone (1.10?5 M) and glucagon (1.10?7 M) did not cause the appearance of tryptophan oxygenase. But the enzyme activity became detectable, when heptocytes from 5-day-old rats were incubated wiht tryptophan, the oxygenase could be induced precociously by dexamethasone, but not by glucagon. The effect of glucagon was first seen 2 weeks after birth. However, in hepatocytes of 9-day-old rats glucagon stimulated formation of cyclic AMP and protein kinase activity (EC 2.7.1.37) and also induced tyrosine aminotransferase (EC 2.6.1.5). When heptocytes of 9-day-old rats were cultured for 4 days, their tryptophan oxygenase became inducible by glucagon. Insulin almost completely inhibited precocious appearance of the enzyme activity evoked by tryptophan plus dexamethasone in hepatocytes of 9-day-old rats. These results suggest that the appearance of tryptophan oxygenase in rat liver during development is due to first the onset of gene coding for tryptophan oxygenase and then stimulation by the sequential of glucocorticoid and glucagon. 相似文献
11.
We compared three different anthraquinones, rhein (4,5-dihydroxy-anthraquinone-2-carboxylic acid), danthron (1,8-dihydroxy-anthraquinone) and chrysophanol (1,8-dihydroxy-3-methylanthraquinone), with respect to their toxicity and ability to induce apoptosis in primary cultures of rat hepatocytes. Rhein was the most effective in producing free radicals, and was the only one of the tested anthraquinones that could induce apoptosis. Addition of 50μM rhein to hepatocyte cultures led to depletion of intracellular reduced glutathione (GSH) and ATP and accumulation of lipid peroxidation products. The substances N,N'-diphenyl-p-phenylenediamine (DPPD), dithiothreitol (DTT), nifedipine and desferal all protected the hepatocytes, i.e. prevented viability loss and ATP depletion, and decreased the GSH depletion.
Cultures exposed to rhein for 15min and subsequently rinsed and incubated for 16h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis.
No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration.
We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death. 相似文献
Cultures exposed to rhein for 15min and subsequently rinsed and incubated for 16h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis.
No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration.
We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death. 相似文献
12.
13.
We compared three different anthraquinones, rhein (4,5-dihydroxy-anthraquinone-2-carboxylic acid), danthron (1,8-dihydroxy-anthraquinone) and chrysophanol (1,8-dihydroxy-3-methylanthraquinone), with respect to their toxicity and ability to induce apoptosis in primary cultures of rat hepatocytes. Rhein was the most effective in producing free radicals, and was the only one of the tested anthraquinones that could induce apoptosis. Addition of 50μM rhein to hepatocyte cultures led to depletion of intracellular reduced glutathione (GSH) and ATP and accumulation of lipid peroxidation products. The substances N,N′-diphenyl-p-phenylenediamine (DPPD), dithiothreitol (DTT), nifedipine and desferal all protected the hepatocytes, i.e. prevented viability loss and ATP depletion, and decreased the GSH depletion.Cultures exposed to rhein for 15min and subsequently rinsed and incubated for 16h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis.No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration.We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death. 相似文献
14.
Matrix metalloproteinases (MMPs) play a major role in tissue remodelling and repair in pathophysiological conditions, such as liver fibrosis and regeneration. Regulation of the MMPs produced by liver cells is important in maintaining cell-matrix ratio in liver, which is a major target site for hormones that mediate their intracellular effects through cAMP. The possibility of cAMP affecting the activity of MMPs and their endogenous inhibitors, tissue inhibitor of MMPs (TIMPs) was studied using isolated rat hepatocytes in culture. Zymographic analysis showed that treatment with hormones like epinephrine, thyroxine and dexamethasone and Bt2 cAMP increased 92 kDa MMP-9 activity. Bt2 cAMP caused upregulation of MMP-9 in a dose-dependent manner. The effect of hormones was less on MMP-2. ELISA using specific antibodies showed increase in levels of MMP-9 and TIMP-1 protein. Kinetic analysis of production of MMPs and TIMPs showed that the response to Bt2 cAMP was a delayed one, indicating its effect on de novo protein synthesis. These results suggest the possibility of cAMP dependent regulation of MMP-9 in the hepatocytes. 相似文献
15.
16.
Expression of alcohol dehydrogenase in primary monolayer cultures of rat hepatocytes 总被引:2,自引:0,他引:2
With the use of an extensively modified Leibovitz-15 medium, the alcohol dehydrogenase activity of hepatocytes prepared from male rats was successfully maintained in primary culture at the level observed in freshly isolated hepatocytes. Enzyme activity was higher in freshly isolated cells from female rats than from male rats, but it fell to the level characteristic of the male animals after four days in culture. The levels of activity of the cells in culture from both sexes were unaffected by treatment with estrogens or androgens. The results suggest that the sex-determined differences in alcohol dehydrogenase activity in rats do not arise from direct effects of gonadal steroids on the liver. 相似文献
17.
18.
Absence of bicarbonate abolishes the glycogenic effect of cortisol in cultured fetal rat hepatocytes
The glycogenic action of cortisol in cultured fetal rat hepatocytes was completely abolished by the absence of NaHCO3 from the medium, while its presence stimulated the action in relation to its concentration. The absence of NaHCO3 slightly reduced glycogen storage by insulin but did not affect glucose-dependent glycogen deposition in the basal state. Also, the cortisol-induced increase in glycogen synthase a activity was reduced but that in total synthase activity was not affected. The absence of NaHCO3 did not reduce the cortisol-induced increase in tyrosine aminotransferase activity and the incorporation of [3H]dexamethasone into the nuclei. These results show that the absence of NaHCO3 specifically inhibits the glycogenic action of glucocorticoids in cultured fetal rat hepatocytes and indicate the need for further investigation into the role of HCO3- in universally used bicarbonate-buffered media. 相似文献
19.
Brian A. Laishes Gary M. Williams 《In vitro cellular & developmental biology. Plant》1976,12(7):521-532
Summary The conditions for obtaining representative, primary adult rat hepatocyte cultures were explored. The methods applied included
enzymatic liver perfusion which was nondestructive to hepatocytes, the prevention of aggregation of dissociated cells and
the selective attachment of viable cells. These procedures yielded a recovery of 50% of the liver cells which gave rise to
cultures representing 14% of the total liver cells. The cultures were composed of homogeneous epithelial-like cells cytologically
similar to hepatocytes and possessed a number of liver-specific enzymes. There was virtually no cell division initially and
most cells died between 24 and 48 hr. Insulin enhanced the attachment of the liver cells, altered their morphology, but did
not prolong cell survival.
This study was supported by grant no. BC 133 from the American Cancer Society. 相似文献
20.
The origin of corticosteroid-binding globulin (CBG) and its evolution in comparison with alpha-fetoprotein (AFP) and albumin synthesis, during early development of rat liver (days 13 and 15 of fetal life), have been investigated using cultured fetal hepatocytes. Synthesis and secretion of CBG, AFP, and albumin is evidence by cycloheximide-sensitive [14C]leucine incorporation into immunoprecipitable polypeptides secreted by cultured hepatocytes into the medium, two-dimensional immunoelectrophoretic and autoradiographic identification of newly synthesized labeled proteins, corticosterone and estradiol-17 beta binding to CBG and AFP, respectively, and indirect immunofluorescence localization of AFP, albumin, and CBG in cultured fetal hepatocytes. CBG, albumin, and AFP accounted for 6, 11, and 25% (in 13-day-old rat fetuses) and 5, 15, and 28% (15-day-old rat fetuses), respectively, of the total secreted proteins in the culture medium. The rates of CBG, AFP, and albumin (counts/minute of secretion [14C]leucine incorporated per milligram of cell protein/hour of culture) in the hepatocytes of 15-day-old rat fetuses were 1.48-, 2.1-, and 2.57-fold higher, respectively, than in the 13-day-old rat fetuses. These results indicate that fetal liver is also active in CBG synthesis, along with AFP and albumin, as early as day 13 of fetal life and that the synthetic rates of these secretory proteins depend upon the developmental stage of the fetal liver. This developmental related change in the rate of synthesis of CBG by the fetal hepatocytes may regulate the level of free (active) glucocorticoid in the fetal circulation and thereby the initiation and regulation of glucocorticoid-dependent processes during the crucial stages of the differentiation of fetal liver and other developing tissues. 相似文献