首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of aging and denervation on the gene expression of uncoupling proteins (UCPs) in slow-twitch soleus and fast-twitch gastrocnemius muscles. In a comparison between the control limbs of 6- and 24-month-old rats, the mRNA levels of UCP3, heart-type fatty acid binding protein (HFABP), and glucose transporter-4 (GLUT4) were considerably lower in the gastrocnemius muscles of the older rats, whereas no significant differences in the mRNA levels of those genes as well as UCP2 and cytochrome oxidase subunit IV (COX-IV) were observed in the soleus muscles of young and old rats. The UCP3 and COX-IV protein levels were also reduced considerably in the aged gastrocnemius muscles with atrophy. Denervation of the sciatic nerve caused an increase in UCP3 mRNA levels in both muscles, but the regulation of other genes contrasted between the two types of skeletal muscles. In spite of the increased mRNA level, a remarkable reduction in UCP3 protein was found in the denervated gastrocnemius muscles. These results indicate that the effects of aging and denervation on the gene expression of UCPs, HFABP, GLUT4, and COX-IV are different between the muscle types. The reduction in the mitochondrial UCP3 and COX proteins in aged fast-twitch muscles may have a negative effect on energy metabolism and thermogenesis in old animals.  相似文献   

2.
Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.  相似文献   

3.
4.
During the post-natal period, skeletal muscles undergo important modifications leading to the appearance of different types of myofibers which exhibit distinct contractile and metabolic properties. This maturation process results from the activation of the expression of different sets of contractile proteins and metabolic enzymes, which are specific to the different types of myofibers. The muscle-specific promoter of the aldolase A gene (pM) is expressed mainly in fast-twitch glycolytic fibers in adult body muscles. We investigate here how pM is regulated during the post-natal development of different types of skeletal muscles (slow or fast-twitch muscles, head or body muscles). We show that pM is expressed preferentially in prospective fast-twitch muscles soon after birth; pM is up-regulated specifically in body muscles only later in development. This activation pattern is mimicked by a transgene which comprises only the 355 most proximal sequences of pM. Within this region, we identify a DNA element which is required for the up-regulation of the transgene during post-natal development in body muscles. Comparison of nuclear M1-binding proteins from young or adult body muscles show no qualitative differences. Distinct M1-binding proteins are present in both young and adult tongue nuclear extracts, compared to that present in gastrocnemius extracts.  相似文献   

5.
p2 1 WAF-1又称 sdi- 1 ,是细胞周期蛋白依赖性蛋白激酶 ( CDK)的抑制物基因 ,与细胞增殖调控及细胞衰老密切相关 .本研究为了解正常细胞中 p2 1 WAF-1对生长因子的反应性 ,以及其在细胞衰老时的表现 .我们以不同代龄的人胚肺二倍体成纤维细胞 ( 2 BS细胞株 )为实验对象 ,通过 Northern杂交术 ,观察表皮生长因子 ( EGF)对年轻 (低代龄 )细胞与衰老 (高代龄 )细胞 p2 1 WAF-1基因表达的影响 .结果显示 :p2 1 WAF-1在衰老 2 BS细胞中高表达 .EGF对年轻细胞 p2 1 WAF-1的表达有诱导作用 ,对衰老细胞有轻微诱导作用 ,在刺激后 3h左右达高峰 ,3~ 6h逐渐回落 ,并持续下降 .作用后 1 2h,其表达水平反而远低于作用前 .此作用在年轻细胞较为明显 .由此可见 :( 1 ) EGF对人二倍体成纤维细胞 p2 1 WAF-1的表达有双向性影响 ,先是一过性诱导 ,随后转为阻抑 ;( 2 )衰老细胞 p2 1 WAF-1对EGF的反应性有所降低  相似文献   

6.
Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We hypothesized that IL-15 mRNA expression would increase as a result of both aging and muscle unloading and that muscle would express the mRNA for a functional trimeric IL-15 receptor (IL-15R). Two models of unloading were used in this study: hindlimb suspension (HS) in rats and wing unloading in quail. The absolute muscle wet weight of plantaris and soleus muscles from aged rats was significantly less when compared with muscles from young adult rats. Although 14 days of HS resulted in reduced muscle mass of plantaris and soleus muscles from young adult animals, this effect was not observed in muscles from aged animals. A significant aging times unloading interaction was observed for IL-15 mRNA in both rat soleus and plantaris muscles. Patagialis (PAT) muscles from aged quail retained a significant 12 and 6% of stretch-induced hypertrophy after 7 and 14 days of unloading, respectively. PAT muscles from young quail retained 15% hypertrophy at 7 days of unloading but regressed to control levels following 14 days of unloading. A main effect of age was observed on IL-15 mRNA expression in PAT muscles at 14 days of overload, 7 days of unloading, and 14 days of unloading. Skeletal muscle also expressed the mRNAs for a functional IL-15R composed of IL-15R, IL-2/15R-, and -c. Based on these data, we speculate that increases in IL-15 mRNA in response to atrophic stimuli may be an attempt to counteract muscle mass loss in skeletal muscles of old animals. Additional research is warranted to determine the importance of the IL-15/IL-15R system to counter muscle wasting. atrophy; interleukins; sarcopenia; gene signaling  相似文献   

7.
8.
Recruited immune cells play a critical role in muscle repair, in part by interacting with local stem cell populations to regulate muscle regeneration. How aging affects their communication during myogenesis is unclear. Here, we investigate how aging impacts the cellular function of these two cell types after muscle injury during normal aging or after immune rejuvenation using a young to old (Y‐O) or old to old (O‐O) bone marrow (BM) transplant model. We found that skeletal muscle from old mice (20 months) exhibited elevated basal inflammation and possessed fewer satellite cells compared with young mice (3 months). After cardiotoxin muscle injury (CTX), old mice exhibited a blunted inflammatory response compared with young mice and enhanced M2 macrophage recruitment and IL10 expression. Temporal immune and cytokine responses of old mice were partially restored to a young phenotype following reconstitution with young cells (Y‐O chimeras). Improved immune responses in Y‐O chimeras were associated with greater satellite cell proliferation compared with O‐O chimeras. To identify how immune cell aging affects myoblast function, conditioned media (CM) from activated young or old macrophages was applied to cultured C2C12 myoblasts. CM from young macrophages inhibited myogenesis while CM from old macrophages reduced proliferation. These functional differences coincided with age‐related differences in macrophage cytokine expression. Together, this study examines the infiltration and proliferation of immune cells and satellite cells after injury in the context of aging and, using BM chimeras, demonstrates that young immune cells retain cell autonomy in an old host to increase satellite cell proliferation.  相似文献   

9.
In this study, the protein expression profile of extensor digitorum longous (EDL) and Soleus (SOL) muscles, representing fast- and slow-twitch skeletal muscles, respectively, was established using high resolution two-dimensional electrophoresis (2-DE). One protein spot was found uniquely expressed in EDL muscle. N-terminal sequence analysis identified the protein as parvalbumin. Parvalbumin is a high affinity calcium binding protein that regulates muscle contraction and relaxation. Our experiments revealed that parvalbumin expression in EDL muscle was down-regulated during aging. In addition, high-intensity exercise could reverse this age-related change. Soleus muscles do not normally express parvalbumin, but high-intensity exercise could ectopically induce its expression in both young and old SOL muscles. We have also confirmed our 2-DE findings by immunohistochemistry on muscle sections. Our results suggest that high-intensity training could be used to improve muscle functions during aging because parvalbumin play an important role in regulating skeletal muscle contraction and relaxation.  相似文献   

10.
Proteomic analysis of slow- and fast-twitch skeletal muscles   总被引:5,自引:0,他引:5  
Skeletal muscles are composed of slow- and fast-twitch muscle fibers, which have high potential in aerobic and anaerobic ATP production, respectively. To investigate the molecular basis of the difference in their functions, we examined protein profiles of skeletal muscles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis with pH 4-7 and 6-11 isoelectric focusing gels. A comparison between rat soleus and extensol digitorum longus (EDL) muscles that are predominantly slow- and fast-twitch fibers, respectively, showed that the EDL muscle had higher levels of glycogen phosphorylase, most glycolytic enzymes, glycerol 3-phosphate dehydrogenase, and creatine kinase; while the soleus muscle had higher levels of myoglobin, TCA cycle enzymes, electron transfer flavoprotein, and carbonic anhydrase III. The two muscles also expressed different isoforms of contractile proteins including myosin heavy and light chains. These protein patterns were further compared with those of red and white gastrochnemius as well as red and white quadriceps muscles. It was found that metabolic enzymes showed a concerted regulation dependent on muscle fiber types. On the other hand, expression of contractile proteins seemed to be independent of the metabolic characteristics of muscle fibers. These results suggest that metabolic enzymes and contractile proteins show different expression patterns in skeletal muscles.  相似文献   

11.
Regenerative potential of human skeletal muscle during aging   总被引:3,自引:0,他引:3  
In this study, we have investigated the consequences of aging on the regenerative capacity of human skeletal muscle by evaluating two parameters: (i) variation in telomere length which was used to evaluate the in vivo turn-over and (ii) the proportion of satellite cells calculated as compared to the total number of nuclei in a muscle fibre. Two skeletal muscles which have different types of innervation were analysed: the biceps brachii, a limb muscle, and the masseter, a masticatory muscle. The biopsies were obtained from two groups: young adults (23 +/- 1.15 years old) and aged adults (74 +/- 4.25 years old). Our results showed that during adult life, minimum telomere lengths and mean telomere lengths remained stable in the two muscles. The mean number of myonuclei per fibre was lower in the biceps brachii than in the masseter but no significant change was observed in either muscle with increasing age. However, the number of satellite cells, expressed as a proportion of myonuclei, decreased with age in both muscles. Therefore, normal aging of skeletal muscle in vivo is reflected by the number of satellite cells available for regeneration, but not by the mean number of myonuclei per fibre or by telomere lengths. We conclude that a decrease in regenerative capacity with age may be partially explained by a reduced availability of satellite cells.  相似文献   

12.
13.
Aging is associated with an increase in insulin resistance in skeletal muscle, yet the underlying mechanism is not well established. We hypothesize that with aging, a chronic increase in stress kinase activation, coupled with a decrease in oxidative capacity, leads to insulin resistance in skeletal muscle. In aged (24 mo old) and young (3 mo old) Fischer 344 rats, 2-deoxyglucose uptake and insulin signaling [as measured by phosphorylation of insulin receptor substrate-1 (IRS-1), Akt (protein kinase B), and Akt substrate of 160 kDa (AS160)] decreased significantly with age. Activation of, c-Jun NH(2)-terminal kinase (JNK), glycogen serine kinase-3beta (GSK-3beta), and degradation of IkappaBalpha by the upstream inhibitor of kappa B kinase (IKKbeta), as measured by Western blot analysis, were increased with age in both soleus and epitrochlearis (Epi) muscles. However, much higher activation of these kinases in Epi muscles from young rats compared with soleus results in a greater effect of these kinases on insulin signaling in fast-twitch muscle with age. Heat shock protein (HSP) 72 expression and phosphorylation of HSP25 were higher in soleus compared with Epi muscles, and both parameters decreased with age. Age and fiber type differences in cytochrome oxidase activity are consistent with observed changes in HSP expression and activation. Our results demonstrate a significant difference in the ability of slow-twitch and fast-twitch muscles to respond to insulin and regulate glucose with age. A greater constitutive HSP expression and lower stress kinase activation may account for the ability of slow-twitch muscles to preserve the capacity to respond to insulin and maintain glucose homeostasis with age.  相似文献   

14.
MyoD and myogenin protein expression in skeletal muscles of senile rats   总被引:4,自引:0,他引:4  
We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin approximately 3.2, approximately 4.0, and approximately 5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (approximately 43-45 kDa) and a double (or triple) MyoD-like band (approximately 55-65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was approximately 3.4, approximately 4.7, approximately 9.1, and approximately 11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.  相似文献   

15.
We have used immunocytological techniques to examine the developmental expression of the Ca2+-binding protein parvalbumin in Xenopus laevis embryos. Western blot experiments show that at least three different forms of parvalbumin are expressed during embryogenesis; the tadpole tail expresses one form, adult brain expresses another, mylohyoid muscle expresses both, and gastrocnemius and sartorius muscles express these two plus a third form. Parvalbumin (PV) is first detectable by immunofluorescence at stages 24-25 of development, a time when myotomal muscles are differentiating and contractile activity occurs spontaneously in embryos. At metamorphosis, PV is expressed in developing limb muscles. While the majority of skeletal muscle fibers express high levels of PV in both embryos and adults, a second fiber type has no detectable PV. The arrangement of PV-containing fibers is stereotyped in each muscle group examined. Histochemical staining of tadpole muscles indicate that PV-containing fibers correspond to fast-twitch skeletal muscles, whereas those without PV correspond to slow-twitch muscles. During tail resorption at metamorphosis, PV appears to be extruded from dying tail muscle cells and taken up by phagocytic cells.  相似文献   

16.
Three fast myosin heavy chains in adult rat skeletal muscle   总被引:12,自引:0,他引:12  
A B?r  D Pette 《FEBS letters》1988,235(1-2):153-155
A new fast myosin heavy chain isoform was electrophoretically detected in adult rat skeletal muscles. It was present at high levels in diaphragm and, therefore, designated as MHCIId. Appreciable amounts of MHCIId were detected in tongue musculature, the extraocular muscles, and in the deep red portions of various fast muscles. Its concentration in fast-twitch muscle was greatly increased by chronic stimulation.  相似文献   

17.
Regulation of Leydig cell steroidogenic function during aging   总被引:9,自引:0,他引:9  
This article summarizes a talk on Leydig cell aging presented at the 1999 Annual Meeting of the Society for the Study of Reproduction. In the Brown Norway rat, serum testosterone levels decrease with aging, accompanied by increases in serum FSH. The capacity of Leydig cells to produce testosterone is higher in young than in old rats. Binding studies with hCG revealed reduced receptor number in old vs. young Leydig cells. In response to incubation with LH, cAMP production was found to be reduced in old vs. young Leydig cells, indicating that signal transduction mechanisms in the old cells are affected by aging. Steroidogenic acute regulatory protein and mRNA levels are reduced in old Leydig cells, suggesting that there may be deficits in the transport of cholesterol to the inner mitochondrial membrane of aged cells. The activity of P450 side-chain cleavage enzyme is reduced in old vs. young cells, as are the activities of each of 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase/C17-20 lyase, and 17-ketosteroid reductase. Serum LH levels do not differ between young and old rats, and the administration of LH failed to induce old Leydig cells to produce high (young) testosterone levels, suggesting that the cause of age-related reductions in steroidogenesis is not LH deficits. We hypothesized that reactive oxygen, produced as a by-product of steroidogenesis itself, might be responsible for age-related reductions in testosterone production by the Leydig cells. Consistent with this, long-term suppression of steroidogenesis was found to prevent or delay the reduced steroidogenesis that accompanies Leydig cell aging. A possible explanation of this finding is that long-term suppression of steroidogenesis prevents free radical damage to the cells by suppressing the production of the reactive oxygen species that are a by-product of steroidogenesis itself.  相似文献   

18.
An in vivo adenoviral gene delivery system was utilized to assess the effect of overexpressing protein kinase C (PKC)-zeta on rat skeletal muscle glucose transport activity. Female lean Zucker rats were injected with adenoviral/human PKC-zeta (hPKC-zeta) and adenoviral/LacZ in opposing tibialis anterior muscles. One week subsequent to adenoviral/gene delivery rats were subjected to hind limb perfusion. The hPKC-zeta protein was expressed at the same level (fast-twitch white) or at approximately 80% of the level (fast-twitch red) of endogenous PKC-zeta, thus approximately doubling the amount of PKC-zeta in tibialis anterior. Basal glucose transport activity was elevated approximately 3.4- and 2-fold, respectively, in fast-twitch white and red hPKC-zeta muscle relative to control. Submaximal insulin-stimulated glucose transport activity, corrected for basal transport, was approximately 90 and 40% over control values, respectively, in fast-twitch white and red hPKC-zeta muscle. The enhancement of glucose transport activity in muscle expressing hPKC-zeta occurred in the absence of any change in GLUT1 or GLUT4 protein levels, suggesting a redistribution of existing transporters to the cell surface. These results demonstrate that an adenoviral vector can be used to deliver expressible hPKC-zeta to adult rat skeletal muscle in vivo and also affirm a role for PKC-zeta in the regulation of glucose transport activity.  相似文献   

19.
The endogenous activity and the binding of high-uptake beta-N-acetylglucosaminidase were assayed in the membranes of heart and skeletal muscles of young (2 months) and old (15 months) NMRI-mice (Mus musculus) to evaluate the age-related changes in the phosphomannosyl receptors of lysosomal enzymes in muscular membranes. The total activities of beta-N-acetylglucosaminidase were significantly higher in cardiac and skeletal muscles of old than young mice. The total and the specific (inhibited by mannose-6-phosphate) binding of beta-N-acetylglucosaminidase to the membranes of cardiac muscle, but not to those of skeletal muscle, were higher in old mice than in young ones. The endogenous activity of beta-N-acetylglucosaminidase was significantly higher in the membranes of skeletal muscles of old mice than in those of young mice. The membranes of heart muscles did not show any difference in the endogenous activities. The saturation properties of the binding of beta-N-acetylglucosaminidase to the phosphomannosyl receptors were very similar in the membranes of heart and skeletal muscles of both age groups. We conclude that during aging the number of phosphomannosyl receptors of lysosomal enzymes increases in the membranes of heart muscle while the occupancy of phosphomannosyl receptors with endogenous ligands increases in the membranes of skeletal muscle.  相似文献   

20.
High levels of insulin-like growth factor II (IGFII) mRNA expression are detected in many human tumors of different origins including rhabdomyosarcoma, a tumor of skeletal muscle origin. To investigate the role of IGFII in tumorigenesis, we have compared the mouse myoblast cell line C2C12-2.7, which was stably transfected with human IGFII cDNA and expressed high and constant amounts of IGFII, to a control cell line C2C12-1.1. A rhabdomyosarcoma cell line, RH30, which expresses high levels of IGFII and contains mutated p53, was also used in these studies. IGFII overexpression in mouse myoblast C2C12 cells causes a reduced cycling time and higher growth rate. After gamma-irradiation treatment, C2C12-1.1 cells were arrested mainly in G0/G1 phase. However, C2C12-2.7 and RH30 cells went through a very short G1 phase and then were arrested in an extended G2/M phase. To verify further the effect of IGFII on the cell cycle, we developed a Chinese hamster ovary (CHO) cell line with tetracycline-controlled IGFII expression. We found that CHO cells with high expression of IGFII have a shortened cycling time and a diminished G1 checkpoint after treatment with methylmethane sulfonate (MMS), a DNA base-damaging agent, when compared with CHO cells with very low IGFII expression. It was also found that IGFII overexpression in C2C12 cells was associated with increases in cyclin D1, p21, and p53 protein levels, as well as mitogen-activated protein kinase activity. These studies suggest that IGFII overexpression shortens cell cycling time and diminishes the G1 checkpoint after DNA damage despite an intact p53/p21 induction. In addition, IGFII overexpression is also associated with multiple changes in the levels and activities of cell cycle regulatory components following gamma-irradiation. Taken together, these changes may contribute to the high growth rate and genetic alterations that occur during tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号