首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Restriction of energy intake, energy expenditure, and aging   总被引:6,自引:0,他引:6  
Energy restriction (ER), without malnutrition, increases maximum life span and retards the development of a broad array of pathophysiological changes in laboratory rodents. The mechanism responsible for the retardation of aging by ER is, however, unknown. One proposed explanation is a reduction in energy expenditure (EE). Reduced EE may increase life span by decreasing the number of oxygen molecules interacting with mitochondria, thereby lowering reactive oxygen species (ROS) production. As a step toward testing this hypothesis, it is important to determine the effect of ER on EE. Several whole-body, organ, and cellular studies have measured the influence of ER on EE. In general, whole-body studies have reported an acute decrease in mass-adjusted EE that disappears with long-term ER. Organ-specific studies have shown that decreases in EE of liver and gastrointestinal tract are primarily responsible for initial reductions in EE with ER. These data, however, do not determine whether cellular EE is altered with ER. Three major processes contributing to resting EE at the cellular level are mitochondrial proton leak, Na(+)-K(+)-ATPase activity, and protein turnover. Studies suggest that proton leak and Na(+)-K(+)-ATPase activity are decreased with ER, whereas protein turnover is either unchanged or slightly increased with ER. Thus, two of the three major processes contributing to resting EE at the cellular level may be decreased with ER. Although additional cellular measurements are needed, the current results suggest that a lowering of EE could be a mechanism for the action of ER.  相似文献   

3.
Medium reorganization energy and enzymatic reaction activation energy   总被引:1,自引:0,他引:1  
Reorganization and activation energies for charge transfer reactions occurring inside a dielectric sphere have been calculated by solving the problem of polar medium reorganization within and outside a dielectric sphere placed in another infinite dielectric. The dielectric sphere is assumed to simulate a protein globule, i.e. an enzyme molecule. It has been shown that for some reaction types the activation energy tends to decrease as the globule radius increases and that for each of the reaction types considered there is an optimal globule radius an increase of which does not bring about any tangible activation energy reduction. The calculated optimal radii for different processes are in good agreement with the increasing molecular sizes in the series: ribonuclease less than or equal to lysozyme less than serine proteinases approximately equal to cysteine proteinases less than NAD-dependent dehydrogenases. The calculated radii are usually about 1.5 to 1.7 times (and molecular masses about 4-5 times) smaller than the experimental ones. The reasons for this discrepancy are discussed and it has been suggested that the approximate nature of the treatment of a protein globule as a structureless dielectric is the main reason. It is shown that charge transfer at an acute angle to the globule surface is the optimum process. For endoergonic reaction stages it is the net charge transfer towards the periphery and for exoergonic ones that in the reverse direction which are advantageous. These conclusions are consistent with the data about the structure of the above-mentioned enzymes.  相似文献   

4.
Calculation of Cumulative Energy Demand (CED) of various energy systems and the computation of their Energy Yield Ratio (EYR) suggests that one single renewable energy technology cannot be said to be the best. Due to the difference in availability of renewable energy sources, their suitability varies from place to place. Wind energy converters, solar water heating systems and photovoltaic systems have been analysed for different types of locations. Comparing the general bandwidth of performance of these technologies, however, the wind energy converters tend to be better, followed by solar water heating systems and photovoltaic systems. Since a major part of the methodology of findingCED is very close to that of life cycle assessment and also because of the dominance of environmental impacts caused by the energy demand in the entire life cycle of any product or system, it is suggested that theCED can be used as an indicator of environmental impacts, especially in the case of power producing systems. Keywords: Cumulative energy demand; life cycle assessment; energy yield ratio; photovoltaics; solar water heating; wind energy Abbreviations: CED — Cumulative Energy Demand; EYR — Energy Yield Ratio; LCA — Life Cycle Assessment; Photovoltaics — PV; WEC — Wind Energy Converters  相似文献   

5.
6.
Human energy     
In the midst of big-oil record profits and growing debate on global warming, the Chevron Corporation launched its “Human Energy” public relations campaign. In television commercials and print advertisements, Chevron portrays itself as a compassionate entity striving to solve the planet’s energy crisis. Yet, the first term in this corporate oxymoron misleadingly reframes the significance of the second, suggesting that the corporation has a renewed focus. In depicting Chevron as a green/human organization, the “Human Energy” campaign obscures from view the corporation’s more unsightly products, policies, and practices. Reflection, however, on our own complicity in sustaining energy corporations and their activities undermines binary thinking and signals that the compulsion to denounce is insufficient. This article explores Chevron’s media campaign and one organized reaction to it. This counter-campaign both redeployed Chevron’s imagery and underscored our collusion and responsibility—tactics seeking to loosen the taut inevitability-of-oil story at Chevron’s core.  相似文献   

7.
Wastewater treatment plants (WWTPs) consume high amounts of energy which is mostly purchased from the grid. During the past years, many ongoing measures have taken place to analyze the possible solutions for both reducing the energy consumption and increasing the renewable energy production in the plants. This review contains all possible aspects which may assist to move towards energy neutrality in WWTPs. The sources of energy in wastewater were introduced and different indicators to express the energy consumption were discussed with examples of the operating WWTPs worldwide. Furthermore, the pathways for energy consumption reductions were reviewed including the operational strategies and the novel technological upgrades of the wastewater treatment processes. Then the methods of recovering the potential energy hidden in wastewater were described along with application of renewable energies in WWTPs. The available assessment methods, which may help in analyzing and comparing WWTPs in terms of energy and greenhouse gas emissions were introduced. Eventually, successful case studies on energy self-sufficiency of WWTPs were listed and the innovative projects in this area were presented.  相似文献   

8.
Results are presented from a theoretical investigation and quantitative analysis of the physical processes that govern the efficiency of a coaxial device aimed at converting the energy of a relativistic electron beam into the energy of a TEM wave (a wave in a circular cylindrical coaxial waveguide). The key diffractional problem is solved exactly using a simplified theoretical model, which makes it possible to understand the mechanisms for the formation of a TEM wave and determine how the beam parameters and the design parameters of the converter affect the relative fractions of the kinetic energy of a relativistic electron beam and the energy of its own magnetic and electric fields that are transferred into the energy of the TEM wave field. The results obtained are analyzed quantitatively, and prospects for further theoretical and experimental research in this area are outlined.  相似文献   

9.
《Cell metabolism》2022,34(12):1901-1903
  相似文献   

10.
11.
The regulation of the energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as obesity and type 2 diabetes mellitus. The decisive role of the brain as the active controller and heavy consumer in the complex whole body energy metabolism is the matter of recent research. Latest studies suggest that the brain's energy supply has the highest priority while all organs in the organism compete for the available energy resources. In our novel mathematical model, we address these new findings. We integrate energy fluxes and their control signals such as glucose fluxes, insulin signals as well as the ingestion momentum in our new dynamical system. As a novel characteristic, the hormone insulin is regarded as central feedback signal of the brain. Hereby, our model particularly contains the competition for energy between brain and body periphery. The analytical investigation of the presented dynamical system shows a stable long-term behavior of the entire energy metabolism while short time observations demonstrate the typical oscillating blood glucose variations as a consequence of food intake. Our simulation results demonstrate a realistic behavior even in situations like exercise or exhaustion, and key elements like the brain's preeminence are reflected. The presented dynamical system is a step towards a systemic understanding of the human energy metabolism and thus may shed light to defects causing diseases based on deregulations in the energy metabolism.  相似文献   

12.
13.
Adenylate energy pool and energy charge in maturing rape seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number.  相似文献   

14.
15.
A method and equipment used for automated determination of activation energies on a single sample are described. Essentially identical results are obtained in both automated and manual methods. The automated method is particularly valuable for minimizing the amounts of enzyme, substrate, and time required. Further, errors in repetitive pipetting and calculation are eliminated.  相似文献   

16.
Bamboo has been identified as a promising solution to the energy crisis and climate change as a source of biomass energy. Due to its rapid growth and high-value products, bamboo is considered as a potential source of biomass energy. Bamboo contains a significant amount of cellulose and hemicellulose, which can be converted to sugar constituents, making it an ideal raw material for energy production. This article reviews the different processes of producing bioethanol, biogas, biochar, and bio-oil from bamboo biomass using techniques such as pyrolysis, hydrothermal liquefaction, fermentation, and anaerobic digestion, and discusses the opportunities and challenges of these conversion technologies. It also reviews the main types and morphological characteristics of energy bamboo species and proposes an evaluation system for energy bamboo species, which optimizes the utilization efficiency of bamboo biomass energy and maximizes benefits by adopting appropriate methods for producing bioenergy based on the characteristics of different bamboo species.  相似文献   

17.
庞静  吴沿友  邢德科 《广西植物》2013,33(3):313-318
以贵州省贞丰县鲁荣乡五个地区为采样点,选择各点生长良好、树龄4~5a的野生成年麻疯树与油桐作为研究对象,测定采样点土壤的理化性质和植物的光合、叶绿素荧光参数及干质量热值。结果表明:土壤磷含量的大小顺序为许妹<沙坝<喜朝<孔索<里外;土壤HCO3-含量大小顺序为许妹>喜朝>里外>孔索>沙坝。土壤pH>8时,土壤有效磷含量越高或者HCO3-含量越低,麻疯树与油桐光合能力越强,同一生长点的麻疯树光合与抗胁迫能力都高于油桐。麻疯树和油桐热值均随土壤磷含量增加而增大,随土壤HCO-3含量增加而减小。油桐抗逆性差于麻疯树,但产能多于后者。因此,可以依据土壤的理化性质选择种植麻疯树和油桐。  相似文献   

18.
Objective: Our goal was to compare the effects of mandatory consumption of commercial snack products (CSPs) on energy intakes and energy balance in free‐living adults and to assess the interaction between habitual level of CSP consumption and the interventions. Research Methods and Procedures: Four groups of 18 subjects (lean and overweight, males and females) were studied using a crossover design. Subjects consumed one type of CSP (high‐carbohydrate, high‐fat, or mixed composition) at three manipulations of energy 0 MJ (control), 1.5 MJ (low‐energy), and 3.0 MJ (high‐energy) each day during three 14‐day interventions. The study design was parallel for type of CSP (macronutrient composition) and within‐subjects for energy level. Subjects self‐recorded food intakes between Days 8 and 14, and body weights were investigator‐recorded on Days 1, 8, and 15 of each intervention period. Daily energy expenditure was estimated by heart rate monitoring. Results: Daily energy intakes increased from 10.4 MJ (control) to 11.1 MJ (low‐energy) and 11.5 MJ (high‐energy) (p < 0.001), resulting in a trend (not significant) for body weight gain. Energy balance was more positive when subjects were not recording their food intakes than when they were (p < 0.001). There was a trend (not significant) for greater increases in energy intake with increasing fat content, and energy density, of the interventions. Frequent CSP consumers compensated more for the interventions than did infrequent CSP consumers (R2 = 0.125, p = 0.003). Discussion: Subjects partially compensated for energy when supplemented with CSPs over 14‐day periods, although this was insufficient to prevent some increase in energy balance. The level of compensation correlated with habitual energy intake from CSPs.  相似文献   

19.
The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号