首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin (Ub) carboxyl-terminal hydrolase L1 (UCH-L1) has dual functions, such as hydrolase activity on the chemical bonds formed by the C-terminal Gly of Ub and dimerization-dependent ubiquitin ligase activity. Accumulating evidence suggests that dual activities of UCH-L1 were intimately associated with Parkinson’s diseases (PD) and cancer. However, the molecular mechanism that regulates UCH-L1 enzymatic activity has not yet been fully elucidated. The serine protease high temperature requirement A2 (HtrA2), a PD-associated gene, is important in regulating cell survival as well as apoptosis. Using in vitro and in vivo cleavage assays, we have demonstrated that UCH-L1 is a natural substrate for the serine protease HtrA2 in the apoptotic pathway. Notably, we show that released, cytosolic HtrA2 decreases UCH-L1 protein level and its hydrolase activity through HtrA2-mediated cleavage of UCH-L1 under apoptotic conditions. These findings suggest that the HtrA2-mediated cleavage of UCH-L1 may play important roles in regulating the fine balance between cell growth and cell death.  相似文献   

2.
The serine protease HtrA2/Omi is released from the mitochondria into the cytosol following apoptosis stimuli, leading to the programmed cell death in caspase-dependent and -independent manners. The function of HtrA2/Omi closely relates to its protease activity, which is required for cleavage of its substrate such as the members of the X-linked inhibitor of apoptotic protein family. However, the regulation of HtrA2/Omi by signaling molecule has not been documented. Here we report that serine/threonine kinases Akt1 and Akt2 phosphorylate mitochondria-released HtrA2/Omi on serine 212 in vivo and in vitro, which results in attenuation of its serine protease activity and pro-apoptotic function. Abolishing HtrA2/Omi phosphorylation by Akt through mutation of serine 212 to alanine (HtrA2/Omi-S212A) retains its serine protease activity and induces more apoptosis as compared with wild-type HtrA2/Omi. Conversely, HtrA2/Omi-S212D, a mutant mimicking phosphorylation, lost the protease activity and failed to induce the programmed cell death. Furthermore, the phosphorylated HtrA2/Omi fails to cleave X-linked inhibitor of apoptotic protein without interfering with their complex formation. In addition, Akt inhibits the release of HtrA2/Omi from the mitochondria into the cytoplasm in response to cisplatin treatment. These data reveal for the first time that HtrA2/Omi is directly regulated by Akt and provide a mechanism by which Akt induces cell survival at post-mitochondrial level.  相似文献   

3.
Omi/HtrA2 is a mitochondrial serine protease that is released into the cytosol during apoptosis and promotes cytochrome c (Cyt c)dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs) via its IAP-binding motif. The protease activity of Omi/HtrA2 also contributes to the progression of both apoptosis and caspase-independent cell death. In this study, we found that wild-type Omi/HtrA2 is more effective at caspase activation than a catalytically inactive mutant of Omi/HtrA2 in response to apoptotic stimuli, such as UV irradiation or tumor necrosis factor. Although similar levels of Omi/HtrA2 expression, XIAP-binding activity, and Omi/HtrA2 mitochondrial release were observed among cells transfected with catalytically inactive and wild-type Omi/HtrA2 protein, XIAP protein expression after UV irradiation was significantly reduced in cells transfected with wild-type Omi/HtrA2. Recombinant Omi/HtrA2 was observed to catalytically cleave IAPs and to inactivate XIAP in vitro, suggesting that the protease activity of Omi/HtrA2 might be responsible for its IAP-inhibiting activity. Extramitochondrial expression of Omi/HtrA2 indirectly induced permeabilization of the outer mitochondrial membrane and subsequent Cyt c-dependent caspase activation in HeLa cells. These results indicate that protease activity of Omi/HtrA2 promotes caspase activation through multiple pathways.  相似文献   

4.
The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.  相似文献   

5.
Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.  相似文献   

6.
Omi/HtrA2 is a mammalian serine protease with high homology to bacterial HtrA chaperones. Omi/HtrA2 is localized in mitochondria and is released to the cytoplasm in response to apoptotic stimuli. Omi/HtrA2 induces cell death in a caspase-dependent manner by interacting with the inhibitor of apoptosis protein as well as in a caspase-independent manner that relies on its protease activity. We describe the identification and characterization of a novel compound as a specific inhibitor of the proteolytic activity of Omi/HtrA2. This compound (ucf-101) was isolated in a high throughput screening of a combinatorial library using bacterially made Omi-(134-458) protease and fluorescein-casein as a generic substrate. ucf-101 showed specific activity against Omi/HtrA2 and very little activity against various other serine proteases. This compound has a natural fluorescence that was used to monitor its ability to enter mammalian cells. ucf-101, when tested in caspase-9 (-/-) null fibroblasts, was found to inhibit Omi/HtrA2-induced cell death.  相似文献   

7.
A mature form of nuclear-encoded mitochondrial serine protease HtrA2/Omi is pivotal in regulating apoptotic cell death; however, the underlying mechanism of the processing event of HtrA2/Omi and its relevant biological function remain to be clarified. Here, we describe that HtrA2/Omi is autocatalytically processed to the 36-kDa protein fragment, which is required for the cytochrome c-dependent caspase activation along with neutralizing XIAP-mediated inhibition of caspases through interaction with XIAP, eventually promoting apoptotic cell death. We have shown that the autocatalytic processing of HtrA2/Omi occurs via an intermolecular event, demonstrated by incubating an in vitro translated HtrA2/Omi (S306A) mutant with the enzymatically active glutathione S-transferase-HtrA2/Omi protein. Using N-terminal amino acid sequencing and mutational analysis, we identified that the autocatalytic cleavage site is the carboxyl side of alanine 133 of HtrA2/Omi, resulting in exposure of an inhibitor of apoptosis protein binding motif in its N terminus. Our study provides evidence that the autocatalytic processing of HtrA2/Omi is crucial for regulating HtrA2/Omi-mediated apoptotic cell death.  相似文献   

8.
HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 A crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.  相似文献   

9.
The human PAG gene product (hPag), one member of the TSA/AhpC family, is overexpressed by oxidative stress, which causes apoptosis. To investigate the apoptotic signal transduction mediated by hPag, hPag-binding protein was screened using the yeast two-hybrid system. Omi/HtrA2 was identified as the hPag-binding protein. Omi/HtrA2, a potent proapoptotic factor, is released from the mitochondria into the cytoplasm as the mature form showing serine protease activity during apoptosis in response to oxidative stress. We found that hPag was able to interact with the mature form of Omi/HtrA2, not with the precursor form of Omi/HtrA2. The binding of Omi/HtrA2 to hPag was shown to involve the PDZ-binding domain in Omi/HtrA2. Also, the carboxyl-terminal domain of hPag was shown to be critical for the protein interaction. Using the yeast two-hybrid system and in vitro binding assay, the reduced form of hPag was able to interact with Omi/HtrA2. Interestingly, the protease activity given by the mature form of Omi/HtrA2 was significantly activated by the binding to hPag. Taken together, these results suggest that the specific protein interaction may participate as a molecular switch in modulating cell death in response to oxidative stress.  相似文献   

10.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

11.
12.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

13.
The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity   总被引:10,自引:0,他引:10  
Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins.  相似文献   

14.
15.
16.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

17.
Alzheimer disease-associated beta-amyloid peptide is generated from its precursor protein APP. By using the yeast two-hybrid assay, here we identified HtrA2/Omi, a stress-responsive chaperone-protease as a protein binding to the N-terminal cysteinerich region of APP. HtrA2 coimmunoprecipitates exclusively with immature APP from cell lysates as well as mouse brain extracts and degrades APP in vitro. A subpopulation of HtrA2 localizes to the cytosolic side of the endoplasmic reticulum (ER) membrane where it contributes to ER-associated degradation of APP together with the proteasome. Inhibition of the proteasome results in accumulation of retrotranslocated forms of APP and increased association of APP with HtrA2 and Derlin-1 in microsomal membranes. In cells lacking HtrA2, APP holoprotein is stabilized and accumulates in the early secretory pathway correlating with elevated levels of APP C-terminal fragments and increased Abeta secretion. Inhibition of ER-associated degradation (either HtrA2 or proteasome) promotes binding of APP to the COPII protein Sec23 suggesting enhanced trafficking of APP out of the ER. Based on these results we suggest a novel function for HtrA2 as a regulator of APP metabolism through ER-associated degradation.  相似文献   

18.
19.
20.
Apoptotic-like programmed cell death (PCD) occurs naturally in fungi during development and might also be induced by external conditions. Candidate apoptotic genes have been characterized in several model fungal species but not in plant pathogenic fungi. Here we report on the isolation and characterization of BcNMA, an orthologue of the human pro-apoptotic gene HtrA2 from the plant pathogen Botrytis cinerea. The predicted BcNma protein shows high homology to the previously characterized Nma111p from Saccharomyces cerevisiae and despite some structural differences it complemented the function of Nma111p in Δnma111 mutant strains. BcNMA-over-expression and mutant strains had enhanced or reduced appearance of apoptotic markers, respectively. However there was no difference in growth response of the wild type and BcNMA-transgenic strains to application of various stresses, and the effect on pathogenicity was marginal in both the over-expression and mutant strains. When considered together these results suggest that although BcNma has a pro-apoptotic activity, it is not a major regulator of apoptosis. The protein probably has additional roles that are unrelated to apoptosis, which lead to the pleotrophic phenotype of the transgenic strains and lack of a clear effect on stress adaptation and pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号