首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

2.
Most invasion histories include an estimated arrival time, followed by range expansion. Yet, such linear progression may not tell the entire story. The European green crab (Carcinus maenas) was first recorded in the US in 1817, followed by an episodic expansion of range to the north. Its population has recently exploded in the Canadian Maritimes. Although it has been suggested that this northern expansion is the result of warming sea temperatures or cold-water adaptation, Canadian populations have higher genetic diversity than southern populations, indicating that multiple introductions have occurred in the Maritimes since the 1980s. These new genetic lineages, probably from the northern end of the green crab's native range in Europe, persist in areas that were once thought to be too cold for the original southern invasion front. It is well established that ballast water can contain a wide array of nonindigenous species. Ballast discharge can also deliver genetic variation on a level comparable to that of native populations. Such gene flow not only increases the likelihood of persistence of invasive species, but it can also rapidly expand the range of long-established nonindigenous species.  相似文献   

3.
The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.  相似文献   

4.
Nolte AW 《Molecular ecology》2011,20(9):1803-1804
Invasive species receive attention as manifestations of global ecological change and because of the effects that they may have on other organisms. They are commonly discussed in the context of the ecological perturbations or the human activities that permitted the invasion. There is also evidence, that there is an intrinsic component to biological invasions in that evolutionary changes of the invaders themselves can facilitate or limit invasions (Lee 2002; Urban et al. 2007; Van Bocxlaer et al. 2010). Hence, teasing apart whether environmental change or changes of the organism foster invasions is an interesting field of research. Ample evidence for plants and animals documents that ecological change and human activities trigger range expansions and invasions, but questions regarding evolutionary change of invaders remain less explored although there are several reasons to believe it matters. Firstly, rapid evolutionary change is possible in time-frames relevant for contemporary biological invasions(Hendry et al. 2007). Furthermore, population genetic modelling suggests that there are circumstances where the range expansion and colonization of empty spaces in the course of an invasion can induce evolutionary change in a way that is specific to invaders: the process of repeated founding out of marginal populations in the course of a range expansion can shift allele frequencies and has been referred to as allele surfing, which not only affects neutral genetic variance, but also fitness relevant traits (Klopfstein et al. 2006; Travis et al. 2007; Burton & Travis 2008). Importantly, this process poses a null model for evolutionary inference in invasive populations. It predicts conspicuous allele frequency changes in an expanding metapopulation unless migration homogenizes the gene pool. Despite this relevance, ideas about allele surfing rely heavily on modelling although some experimental evidence comes from studies that document the segregation of genetic variants in growing plaques of bacteria (Hallatschek et al. 2007). To date, little empirical data is available that would reveal the migration processes that affect the establishment of gene pools at invasion fronts in natural systems. This aspect sets the study of Bronnenhuber et al. (2011) apart. They quantify migration behind the expansion front of an invading fish and thus provide important baseline data for the interpretation of the emerging patterns of genetic differentiation.  相似文献   

5.
Jeffrey C. Oliver 《Oikos》2006,112(2):456-463
Anthropogenic changes in organismal distributions have affected many, if not all, terrestrial ecosystems. Anthropogenic plant range expansions (APREs) may have profound effects on the population genetics of native phytophagous insects exploiting recent changes in plant distributions. Here I focus on the important, although often overlooked, effects on insect species which feed on such plants, but do not show evidence of host race formation. This article investigates geographic range expansion and increased interpopulation gene flow, which may occur as a result of phytophagous insects exploiting APREs. The two effects have clear predicted genetic signatures: (1) geographic range expansion should result in low levels of genetic diversity in new portions of the insect species' range, relative to older, pre-APRE portions of the range and (2) increased interpopulation gene flow will result in reduced population genetic differentiation. Data from the literature are qualitatively consistent with the predictions of one or both population genetic change scenarios. Higher order effects, such as reduced local adaptation, increased spread of resistance in agricultural systems, and hybridization among formerly isolated lineages, as evidenced by case studies, and the economic and conservation implications thereof are also discussed. Finally, I outline future approaches for addressing the impact of APREs on native phytophagous insect ecology and discuss the application of these concepts of population genetic change and resultant outcomes to research outside plant–insect interactions.  相似文献   

6.
Environmental changes have caused episodes of habitat expansions in the evolutionary history of many species. These range changes affect the dynamics of biological evolution in multiple ways. Recent microbial experiments as well as simulations suggest that enhanced genetic drift at the frontier of a two-dimensional range expansion can cause genetic sectoring patterns with fractal domain boundaries. Here, we propose and analyze a simple model of asexual biological evolution at expanding frontiers that explains these neutral patterns and predicts the effect of natural selection. We find that beneficial mutations give rise to sectors with an opening angle that depends sensitively on the selective advantage of the mutants. Deleterious mutations, on the other hand, are not able to establish a sector permanently. They can, however, temporarily "surf" on the population front, and thereby reach unusually high frequencies. As a consequence, expanding frontiers are loaded with a high fraction of mutants at mutation–selection balance. Numerically, we also determine the condition at which the wild type is lost in favor of deleterious mutants (genetic meltdown) at a growing front. Our prediction for this error threshold differs qualitatively from existing well-mixed theories, and sets tight constraints on sustainable mutation rates for populations that undergo frequent range expansions.  相似文献   

7.
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central‐northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation‐by‐distance and isolation‐by‐barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi‐permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long‐range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River.  相似文献   

8.
  1. The mango seed weevil Sternochetus mangiferae (Fabricius) is distributed across the major mango-producing areas of the world and causes significant economic losses of mango fruit. Despite its importance as a crop pest, we have only limited information on the population genetics of the mango seed weevil.
  2. Here, we examined the genetic diversity of this important pest using specimens intercepted by Beijing Customs District P. R. in China from 41 countries and regions. We used segments of the mitochondrial gene cytochrome c oxidase subunit I and the nuclear gene elongation factor 1-alpha to examine population genetic structure in this species.
  3. Our results showed that genetic diversity is low in S. mangiferae, with a mean genetic distance of 0.095–0.14%. Other population genetic parameters also indicated a low level of genetic diversity among samples from a large geographic range. Analysis of molecular variance revealed little population genetic structure, and mismatch distribution analyses provided evidence of a population expansion, although other demographic metrics of population expansion were nonsignificant.
  4. We suggest that the observed low level of genetic diversity and population genetic structure in S. mangiferae supports the hypothesis that the population genetics of this species has been impacted by anthropogenic transportation of mangoes and weevils.
  相似文献   

9.
生物入侵是不均衡世界的一个永恒话题,尤其是当人类有意或无意地引入物种后,很多引入显然是无害的,但另外一些则有着严重的后果,会给入侵地的生物以至于整个生物群落造成影响,本文总结了分布区扩张的常见模式,概述了它们对遗传多样性和种群结构式样所造成的影响,描述了如何根据以一批遗传标记所得到的遗传多样性式样来推断入侵途径,来揭示伴随扩张选择和嘌变在形成种群遗传样式中的作用,本文对日益增多的群体遗传学方法进行了总结,这些技术可以用来在不同的时间尺度上推断种群规模所发生的巨大变化(瓶颈效应及种群扩张),最后,我们以欧洲栎瘿蜂(膜翅目,瘿蜂科,瘿蜂族)一系列入侵的数据为例对一些方法进行了说明,从500-10000年的时间尺度上,多态的等位酶位点上等位基因频率的数据表明:1)遗传多样性沿入侵路线呈不断下降的趋势,支持了冰河期避难所作为遗传多样性中心的作用;2)入侵地区的种群与该物种原产地的种群相比,遗传上的分化更为强烈,这种种群结构在空间上的变异可能是被栎瘿蜂开发的资源尤其是栎树寄主在斑块上出现变异的反映。  相似文献   

10.
Aim Phylogeographical studies in the Brazilian Atlantic Forest (BAF) have mostly included species associated with forest habitats, whereas taxa associated with grassland and sand‐dune plant communities have so far been largely overlooked. This study examines the phylogeography of the orchid Epidendrum fulgens, which occurs on coastal sand dunes and granitic outcrops, in order to identify major genetic divergences or disjunctions across the range of the species and to investigate the genetic signatures of past range contractions and expansions. Location Southern and south‐eastern seashore vegetation along the BAF biome, and granitic and arenitic outcrops that occur in the subtropical grassland plant communities located south of the BAF. Methods Nine nuclear and four plastid microsatellite loci were used to genotype 424 individuals from 16 populations across the distributional range of E. fulgens. For both sets of markers, we estimated genetic diversity and population differentiation, testing for a north–south gradient of genetic diversity. The plastid haplotype network and a Bayesian assignment analysis of nuclear markers were used to infer population structure. Past demographic changes were investigated using a coalescence approach. Results A deep disjunction was found between northern populations within the BAF and southern populations outside the BAF that occur on granitic and arenitic outcrops. Recent demographic reductions were detected in northern populations on coastal sands. Such demographic changes were not expected for those populations, as previous studies with forest species had found evidence of population expansion in the same areas. Higher genetic diversity was found in southern populations on granite, in contrast to patterns observed in previous studies of forest species. Main conclusions The results are consistent with the long‐term persistence of E. fulgens. Bottlenecks were detected in populations from areas where population expansion events have been detected in other plant (and animal) species, suggesting that forest expansion after the Last Glacial Maximum played a role in the population fragmentation and decrease in genetic diversity in E. fulgens. A substantial genetic division in E. fulgens corresponds to the ‘Portal de Torres’, a region that demarcates the northern limits of subtropical grassland plant communities and the southern limits of the BAF.  相似文献   

11.
Cerulean warblers (Dendroica cerulea) have experienced significant declines across their breeding range and presently exist in disjunct populations, largely because of extensive loss and fragmentation of their breeding and wintering habitat. Despite this overall decline, a recent north-eastern expansion of the breeding range has been proposed, and some researchers have suggested that the eastern Ontario population may be acting as a source population maintaining sink populations elsewhere. However, little is known about either the geographic distribution of genetic variation or dispersal in these birds. We assayed variation in five microsatellite loci and a 366 base-pair fragment of the mitochondrial control region among 154 cerulean warblers from five populations throughout the breeding range. No evidence of population genetic structure was found. Assignment tests suggested that six individuals were either inter-population migrants or descendants of recent migrants. The lack of population genetic structure is probably due to a combination of historical association and contemporary dispersal. Population decline does not appear to have reduced genetic variation yet. Overall results suggest that cerulean warblers from Ontario, Illinois, Arkansas and Tennessee should be considered a single genetic management unit for conservation.  相似文献   

12.
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm, to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker, demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.  相似文献   

13.
With ongoing global change, life is continuously forced to move to novel areas, which leads to dynamically changing species ranges. As dispersal is central to range dynamics, factors promoting fast and distant dispersal are key to understanding and predicting species ranges. During range expansions, genetic variation is depleted at the expanding front. Such conditions should reduce evolutionary potential, while increasing kin competition. Organisms able to recognise relatives may be able to assess increased levels of relatedness at expanding range margins and to increase their dispersal in a plastic manner. Using individual‐based simulations and experimental range expansions of a spider mite, we demonstrate that plastic responses to kin structure can be at least as important as evolution in driving range expansion speed. Because recognition of kin or kind is increasingly documented across the tree of life, we anticipate it to be a highly important but neglected driver of range expansions.  相似文献   

14.
Range expansion and contraction has occurred in the history of most species and can seriously impact patterns of genetic diversity. Historical data about range change are rare and generally appropriate for studies at large scales, whereas the individual pollen and seed dispersal events that form the basis of geneflow and colonization generally occur at a local scale. In this study, we investigated range change in Fagus sylvatica on Mont Ventoux, France, using historical data from 1838 to the present and approximate Bayesian computation (ABC) analyses of genetic data. From the historical data, we identified a population minimum in 1845 and located remnant populations at least 200 years old. The ABC analysis selected a demographic scenario with three populations, corresponding to two remnant populations and one area of recent expansion. It also identified expansion from a smaller ancestral population but did not find that this expansion followed a population bottleneck, as suggested by the historical data. Despite a strong support to the selected scenario for our data set, the ABC approach showed a low power to discriminate among scenarios on average and a low ability to accurately estimate effective population sizes and divergence dates, probably due to the temporal scale of the study. This study provides an unusual opportunity to test ABC analysis in a system with a well-documented demographic history and identify discrepancies between the results of historical, classical population genetic and ABC analyses. The results also provide valuable insights into genetic processes at work at a fine spatial and temporal scale in range change and colonization.  相似文献   

15.
Large‐scale anthropogenic changes in the environment are reshaping global biodiversity and the evolutionary trajectory of many species. Evolutionary mechanisms that allow organisms to thrive in this rapidly changing environment are just beginning to be investigated (Hoffmann & Sgrò 2011 ; Colautti & Barrett 2013 ). Weedy and invasive species represent ‘success stories’ for how species can cope with human modified environments. As introduced species have spread within recent times, they provide the unique opportunity to track the genetic consequences of rapid range expansion through time and space using historic DNA samples. Using modern collections and herbarium specimens dating back to 1873, Martin et al. ( 2014 ) have provided a more complete understanding of the population history of the invasive, agricultural weed, common ragweed (Ambrosia artemisiifolia; Fig.  1 ) in its native range with surprising results. They find that the recent population explosion of common ragweed in North America coincided with substantial shifts in population genetic structure with implications for invasion.  相似文献   

16.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

17.
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.  相似文献   

18.
Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single‐nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range‐wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.  相似文献   

19.
A pathogen can readily mutate to infect new host types, but this does not guarantee successful establishment in the new habitat. What factors, then, dictate emergence success? One possibility is that the pathogen population cannot sustain itself on the new host type (i.e. host is a sink), but migration from a source population allows adaptive sustainability and eventual emergence by delivering beneficial mutations sampled from the source''s standing genetic variation. This idea is relevant regardless of whether the sink host is truly novel (host shift) or whether the sink is an existing or related, similar host population thriving under conditions unfavourable to pathogen persistence (range expansion). We predicted that sink adaptation should occur faster under range expansion than during a host shift owing to the effects of source genetic variation on pathogen adaptability in the sink. Under range expansion, source migration should benefit emergence in the sink because selection acting on source and sink populations is likely to be congruent. By contrast, during host shifts, source migration is likely to disrupt emergence in the sink owing to uncorrelated selection or performance tradeoffs across host types. We tested this hypothesis by evolving bacteriophage populations on novel host bacteria under sink conditions, while manipulating emergence via host shift versus range expansion. Controls examined sink adaptation when unevolved founding genotypes served as migrants. As predicted, adaptability was fastest under range expansion, and controls did not adapt. Large, similar and similarly timed increases in fitness were observed in the host-shift populations, despite declines in mean fitness of immigrants through time. These results suggest that source populations are the origin of mutations that drive adaptive emergence at the edge of a pathogen''s ecological or geographical range.  相似文献   

20.
Habitat ranges of most species shift over time, for instance due to climate change, human intervention, or adaptation. These demographic changes often have drastic population genetic effects, such as a stochastic resampling of the gene pool through the “surfing” phenomenon. Most models assume that the speed of range expansions is only limited by the dispersal ability of the colonizing species and its reproductive potential. While such models of “phenotype‐limited” expansions apply to species invasions, it is clear that many range expansions are limited rather by the slow motion of habitat boundaries, as driven for instance by global warming. Here, we develop a coalescent model to study the genetic impact of such “boundary‐limited” range expansions. Our simulations and analysis show that the resulting loss of genetic diversity is markedly lower than in species invasions if large carrying capacities can be maintained up to the habitat frontier. Counterintuitively, we find that the total loss of diversity does not depend on the speed of the range expansion: Slower expansions have a smaller rate of loss, but also last longer. Boundary‐limited range expansions exhibit a characteristic genetic footprint and should therefore be distinguished from range expansions limited only by intrinsic characteristics of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号