首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The ability of vitamin D receptor-retinoid X receptor (VDR-RXR) heterodimers to induce a DNA bend upon binding to various vitamin D response elements (VDRE) has been investigated by circular permutation and phasing analysis. Recombinant rat VDR expressed in the baculovirus system and purified recombinant human RXR beta have been used. The VDREs were from 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) enhanced genes (rat osteocalcin, rOC; mouse osteopontin, mOP, and rat 1,25-dihydroxyvitamin D3-24-hydroxylase, r24-OHase), and a 1,25-(OH)2D3 repressed gene (human parathyroid hormone, hPTH). As shown by circular permutation analysis, VDR-RXR induced a distortion in DNA fragments containing various VDREs. Calculated distortion angles were similar in magnitude (57 degrees, 56 degrees, 61 degrees, and 59 degrees, respectively for rOC, mOP, r24-Ohase, and hPTH). The distortions took place with or without a 1,25-(OH)2D3 ligand. The centers of the apparent bend were found in the vicinity of the midpoint of all VDREs, except for rOC VDRE which was found 4 bp upstream. Phasing analysis was performed with DNA fragments containing mOP VDRE and revealed that VDR-RXR heterodimers induced a directed bend of 26 degrees, not influenced by the presence of hormone. In this study we report that similar to other members of the steroid and thyroid nuclear receptor superfamily, VDR-RXR heterodimers induce DNA bending.  相似文献   

9.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and transforming growth factor beta (TGFbeta) potently induce 5-lipoxygenase (5-LO) in myeloid cells. We analyzed vitamin D receptor (VDR) binding to putative vitamin D response elements within the 5-LO promoter and analyzed its function by reporter gene analysis. Binding of VDR and retinoid X receptor to the promoter region was shown in DNase I footprinting, electrophoretic mobility shift and chromatin immunoprecipitation assays. However, the identified VDR binding region did not mediate induction of reporter gene activity by 1,25(OH)(2)D(3)/TGFbeta, neither in the 5-LO promoter context nor with the thymidine kinase (tk) promoter. Insertion of the rat atrial natriuretic factor VDRE in reporter plasmids containing the 5-LO promoter diminished induction by 1,25(OH)(2)D(3)/TGFbeta as compared with the tk promoter. Similarly, low inductions were obtained when cells were transiently or stably transfected with constructs containing various 5-LO promoter regions. Concerning basal promoter activity, we identified a positive regulatory region (-779 to -229), which includes the VDR binding region, in 5-LO-positive MonoMac6 cells. In summary, the VDR/RXR complex binds to putative VDREs in the 5-LO promoter, but other sequences outside the 5-LO promoter seem to be responsible or additionally required for the prominent induction of 5-LO mRNA expression by 1,25(OH)(2)D(3) and TGFbeta.  相似文献   

10.
Rat fibroblast cells carrying an exogenous normal or mutant T24 human H-ras1 gene were transfected with plasmids carrying the normal or mutant T24 H-ras1 gene promoter linked to the reporter chloramphenicol acetyl transferase (CAT) gene and the cells were treated with insulin. We found that the H-ras1 gene was positively autoregulated and that insulin potentiated the response of the T24 ras p21 to the H-ras1 gene promoter. We have also examined the effect of insulin directly on the H-ras1 promoter by treating stable transfectants obtained after transfection of rat fibroblasts with plasmids carrying the normal or mutant T24 H-ras1 gene promoter linked to the reporter CAT gene and the selectable marker aminoglycoside phosphotransferase (aph) gene. We found that insulin appeared to have no direct effect on the H-ras1 promoter in this case, suggesting that the effect is mediated through the ras p21 oncogene product. We suggest that the mutant T24 H-ras p21 protein mediates the action of insulin.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
FOXP3-positive regulatory T (Treg) cells are a unique subset of T cells with immune regulatory properties. Treg cells can be induced from non-Treg CD4(+) T cells (induced Treg [iTreg] cells) by TCR triggering, IL-2, and TGF-β or retinoic acid. 1,25-Dihyroxyvitamin D(3) [1,25(OH)(2)VD(3)] affects the functions of immune cells including T cells. 1,25(OH)(2)VD(3) binds the nuclear VD receptor (VDR) that binds target DNA sequences known as the VD response element (VDRE). Although 1,25(OH)(2)VD(3) can promote FOXP3 expression in CD4(+) T cells with TCR triggering and IL-2, it is unknown whether this effect of 1,25(OH)(2)VD(3) is mediated through direct binding of VDR to the FOXP3 gene without involving other molecules. Also, it is unclear whether FOXP3 expression in 1,25(OH)(2)VD(3)-induced Treg (VD-iTreg) cells is critical for the inhibitory function of these cells. In this study, we demonstrated the presence of VDREs in the intronic conserved noncoding sequence region +1714 to +2554 of the human FOXP3 gene and the enhancement of the FOXP3 promoter activity by such VDREs in response to 1,25(OH)(2)VD(3). Additionally, VD-iTreg cells suppressed the proliferation of target CD4(+) T cells and this activity was dependent on FOXP3 expression. These findings suggest that 1,25(OH)(2)VD(3) can affect human immune responses by regulating FOXP3 expression in CD4(+) T cells through direct VDR binding to the FOXP3 gene, which is essential for inhibitory function of VD-iTreg cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号