首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyperaccumulator Pteris vittata translocates arsenic (As) from roots to fronds efficiently, but the form of As translocated in xylem and the main location of arsenate reduction have not been resolved. Here, P. vittata was exposed to 5 microM arsenate or arsenite for 1-24 h, with or without 100 microM phosphate. Arsenic speciation was determined in xylem sap, roots, fronds and nutrient solutions by high-performance liquid chromatography (HPLC) linked to inductively coupled plasma mass spectrometry (ICP-MS). The xylem sap As concentration was 18-73 times that in the nutrient solution. In both arsenate- and arsenite-treated plants, arsenite was the predominant species in the xylem sap, accounting for 93-98% of the total As. A portion of arsenate taken up by roots (30-40% of root As) was reduced to arsenite rapidly. The majority (c. 80%) of As in fronds was arsenite. Phosphate inhibited arsenate uptake, but not As translocation. More As was translocated to fronds in the arsenite-treated than in the arsenate-treated plants. There was little arsenite efflux from roots to the external solution. Roots are the main location of arsenate reduction in P. vittata. Arsenite is highly mobile in xylem transport, possibly because of efficient xylem loading, little complexation with thiols in roots, and little efflux to the external medium.  相似文献   

2.
* Several fern species can hyperaccumulate arsenic, although the mechanisms are not fully understood. Here we investigate the roles of root absorption, translocation and tolerance in As hyperaccumulation by comparing the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. * The two species were grown in a pot experiment with 0-500 mg As kg-1 added as arsenate, and in a short-term (8 h) uptake experiment with 5 microM arsenate under phosphorus-sufficient conditions. * In the pot experiment, P. vittata accumulated up to 2500 mg As kg-1 frond d. wt and suffered no phytotoxicity. P. tremula accumulated<100 mg As kg-1 frond d. wt and suffered severe phytotoxicity with additions of >or=25 mg As kg-1. In the short-term uptake experiment, P. vittata had a 2.2-fold higher rate of arsenate uptake than P. tremula, and distributed more As taken up to the fronds (76%) than did P. tremula (9%). * Our results show that enhanced root uptake, efficient root-to-shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in P. vittata.  相似文献   

3.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender brake fern (Pteris ensiformis Burm. f.), and Boston fern (Nephrolepis exaltata L.)], which were exposed to 0, 150, or 300 muM of arsenic (Na(2)HAsO(4).7H(2)O), and (ii) the role of anti-oxidative metabolism in arsenic tolerance in these fern species. Arsenic accumulation increased with an increase in arsenic concentration in the growth medium, the most being found in P. vittata fronds showing no toxicity symptoms. In addition, accumulation was highest in the fronds, followed by the rhizome, and finally the roots, in all three fern species. Thiobarbituric acid-reacting substances, indicators of stress in plants, were found to be lowest in P. vittata, which corresponds with its observed tolerance to arsenic. All three ferns responded differentially to arsenic exposure in terms of anti-oxidative defence. Higher levels of superoxide dismutase, catalase, and ascorbate peroxidase were observed in P. vittata than in P. ensiformis and N. exaltata, showing their active involvement in the arsenic detoxification mechanism. However, no significant increase was observed in either guaiacol peroxides or glutathione reductase in arsenic-treated P. vittata. Higher activity of anti-oxidative enzymes and lower thiobarbituric acid-reacting substances in arsenic-treated P. vittata correspond with its arsenic hyper-accumulation and no symptoms of toxicity.  相似文献   

4.
Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation.  相似文献   

5.
The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).  相似文献   

6.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO? and AlAsO? minerals (from < 5 μg L?1 to 5.04-7.37 mg L?1 As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg?1 As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata.  相似文献   

7.
蜈蚣草砷超富集机制及其在砷污染修复中的应用   总被引:3,自引:0,他引:3  
蕨类植物蜈蚣草能够从土壤中吸收砷,并储存于地上部分羽叶的液泡中。蜈蚣草具有高效的抗氧化系统,以降低砷的毒害;其砷酸还原系统和液泡区隔化是蜈蚣草进行砷解毒和砷超富集的重要机制。本文综述了目前蜈蚣草砷超富集机制研究的主要进展,并对其在修复砷污染环境的应用中进行了讨论。  相似文献   

8.
Pteris vittata can tolerate very high soil arsenic concentration and rapidly accumulates the metalloid in its fronds. However, its tolerance to arsenic has not been completely explored. Arbuscular mycorrhizal (AM) fungi colonize the root of most terrestrial plants, including ferns. Mycorrhizae are known to affect plant responses in many ways: improving plant nutrition, promoting plant tolerance or resistance to pathogens, drought, salinity and heavy metal stresses. It has been observed that plants growing on arsenic polluted soils are usually mycorrhizal and that AM fungi enhance arsenic tolerance in a number of plant species. The aim of the present work was to study the effects of the AM fungus Glomus mosseae on P. vittata plants treated with arsenic using a proteomic approach. Image analysis showed that 37 spots were differently affected (21 identified). Arsenic treatment affected the expression of 14 spots (12 up-regulated and 2 down-regulated), while in presence of G. mosseae modulated 3 spots (1 up-regulated and 2 down-regulated). G. mosseae, in absence of arsenic, modulated 17 spots (13 up-regulated and 4 down-regulated). Arsenic stress was observed even in an arsenic tolerant plant as P. vittata and a protective effect of AM symbiosis toward arsenic stress was observed.  相似文献   

9.
The uptake, transport, and accumulation of metals by plants are functions central to successful phytoextraction. This study investigates the uptake and translocation of arsenic from a contaminated sandy soil by a mature Chinese brake fern (Pteris vittata L.). An existing mathematical model for the coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) was modified to examine the flow of water as well as the uptake and translocation of total arsenic in the xylem of the fern. This model was calibrated using greenhouse measurements before its application. Simulation results showed that about 20% of the soil arsenic was removed by the fern in 10 d, of which about 90% of the arsenic was stored in the fronds and 10% in the roots. Although arsenic mass in the plant tissues increased consecutively with time, arsenic concentration in the xylem sap of the root tips has a typical diurnal distribution pattern: increasing during the day and decreasing at night, resulting from daily variations of frond surface water transpiration. The largest difference in simulated arsenic concentration in the root tips between the day and night was about 5%. This study also suggests that the use of transpiration stream concentration factor (TSCF), which is defined as the ratio of chemical concentration in the xylem sap to that in the external solution, to evaluate the translocation efficiency of arsenic for the hyperaccumulator Chinese brake fern (Pteris vittata L.) could be limited.  相似文献   

10.
A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.  相似文献   

11.
The sporophyte of the fern Pteris vittata is known to hyperaccumulate arsenic (As) in its fronds to >1% of its dry weight. Hyperaccumulation of As by plants has been identified as a valuable trait for the development of a practical phytoremediation processes for removal of this potentially toxic trace element from the environment. However, because the sporophyte of P. vittata is a slow growing perennial plant, with a large genome and no developed genetics tools, it is not ideal for investigations into the basic mechanisms underlying As hyperaccumulation in plants. However, like other homosporous ferns, P. vittata produces and releases abundant haploid spores from the parent sporophyte plant which upon germination develop as free-living, autotrophic haploid gametophyte consisting of a small (<1 mm) single-layered sheet of cells. Its small size, rapid growth rate, ease of culture, and haploid genome make the gametophyte a potentially ideal system for the application of both forward and reverse genetics for the study of As hyperaccumulation. Here we report that gametophytes of P. vittata hyperaccumulate As in a similar manner to that previously observed in the sporophyte. Gametophytes are able to grow normally in medium containing 20 mm arsenate and accumulate >2.5% of their dry weight as As. This contrasts with gametophytes of the related nonaccumulating fern Ceratopteris richardii, which die at even low (0.1 mm) As concentrations. Interestingly, gametophytes of the related As accumulator Pityrogramma calomelanos appear to tolerate and accumulate As to intermediate levels compared to P. vittata and C. richardii. Analysis of gametophyte populations from 40 different P. vittata sporophyte plants collected at different sites in Florida also revealed the existence of natural variability in As tolerance but not accumulation. Such observations should open the door to the application of new and powerful genetic tools for the dissection of the molecular mechanisms involved in As hyperaccumulation in P. vittata using gametophytes as an easily manipulated model system.  相似文献   

12.
Effects of Se on the uptake of essential elements in Pteris vittata L.   总被引:2,自引:0,他引:2  
Selenium has been proven to be an antioxidant in plants at low dosages. To understand better the mechanisms of Se toxicity and benefit to plants, more investigations about effects of Se on the uptake of essential elements in plants would be desirable. In this study, hydroponic (nutrient solution culture) and pot (soil culture) experiments were simultaneously conducted to investigate the effects of Se on the uptake and distribution of essential elements in Pteris vittata. L (Chinese brake fern), an arsenic (As)-hyperaccumulator and a selenium (Se)-accumulator. Chinese brake fern took up much more Se in nutrient solution culture than in soil culture, with the highest Se content recorded as 1,573 mg kg?1 in the roots, demonstrating remarkable tolerance to Se. In soil culture, Chinese brake fern also accumulated high content of Se, with the highest content measured as 81 mg kg?1 and 233 mg kg?1, in the fronds and roots, respectively. In soil culture, the addition of Se suppressed the uptake of most measured elements, including magnesium (Mg), potassium (K), phosphorus (P), iron (Fe), copper (Cu) and zinc (Zn). In nutrient solution culture, when the Se content in the tissues of Chinese brake fern was relatively low, the supplementation of Se suppressed the uptake of most essential elements; however, with the increase of Se content, stimulation effects of Se on the uptake of Ca, Mg, K were observed. An initial decrease followed by a rapid increase of Fe content in the fronds of Chinese brake fern was found with Se addition and tissue Se content increasing in nutrient solution culture, suggesting antagonistic and synergic roles of Se on these elements under low and high Se exposure, respectively. We suggest that Ca, Mg, K may be involved in the tolerance mechanism of Se, and that the regulation of Fe accumulation by Se in the fronds might be partially due to the dual effects of Se on Chinese brake fern.  相似文献   

13.
Arsenic is a common contaminant in soils and water. It is well established that the fern Pteris vittata L. is an As hyperaccumulator and therefore has potential to phyroremediate As-polluted soils. Also, it is accepted that rhizosphere microflora play an enhancing role in plant uptake of metallic elements from soils. Studies showed that hydroponiclly grown P. Vittata accumulated arsenite more than the arsenate form of As apparently because arsenate and phosphate are analogues and therefore its absorption is inhibited by phosphate. The objective of this study was to determine whether addition of five different arsenate-reducing bacteria would enhance arsenic uptake by P. vittata grown in arsenic polluted soils in afield experiment. Results showed that addition of the As reducing bacteria promoted the growth of P. vittata, increased As accumulation, activated soil insoluble As, and reduced As leaching compared to the untreated control. Plant biomass increased by 53% and As uptake by 44%. As leaching was reduced by 29% to 71% depending on the As reducing bacterium. The results in their entirety permitted some insight into the mechanisms by which the arsenate reducing bacteria enhanced the effectiveness of P. vittata to remove As from the polluted soil.  相似文献   

14.
This study examined the phytoextraction potential of two arsenic (As) hyperaccumulators, Pteris vittata L. and Pityrogramma calomelanos var. austroamericana at a historical As-contaminated cattle dip site in northern New South Wales (NSW), Australia. Total As concentration in the surface soil (0-20 cm) showed a better spatial structure than phosphate-extractable As in the surface and sub-surface soil at this site. P. calomelanos var. austroamericana produced greater frond dry biomass (mean = 130 g plant(-1)) than P. vittata (mean = 81 g plant(-1)) after 10 months of growth. Arsenic concentration and uptake in fronds were also significantly higher in P. calomelanos var. austroamericana (means = 887 mg kg(-1) and 124 mg plant(-1)) than in P. vittata (means = 674 mg kg(-1) and 57 mg plant(-1)). Our results showed that under the field conditions and highly variable soil As at the site, P. calomelanos var. austroamericana performed better than P. vittata. We predict that P. calomelanos var. austroamericana would take approximately 100 years to reduce the total As to below 20 mg kg(-1) at the site compared to > or =200 years estimated for P. vittata. However, long-term data are required to confirm these observations under field conditions.  相似文献   

15.
To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in Km and Vmax values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 μM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds.  相似文献   

16.
The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of < or = 500 microg/L arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors < 10), but is not considered a good potential phytoremediation candidate.  相似文献   

17.
A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata.  相似文献   

18.
The sporophyte and gametophyte of Pteris vittata are arsenic hyperaccumulators, however, little is known about the mechanism by which the gametophyte deals with this toxic element. An in vitro system (spores grown in arsenic amended nutrient media) was used to investigate the impact of arsenic on growth of the gametophyte and the role of antioxidative systems in combating As-stress. When mature spores of P. vittata were grown in medium amended with 0-50 mg kg(-1) of arsenic (as arsenate), the arsenic concentration in the gametophyte increased, with increasing arsenate in the media, but did not inhibit the spore germination and biomass development. Increases in the level of antioxidant enzymes, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione-Stransferase) and of ascorbic acid and glutathione probably enabled the gametophyte to withstand the oxidative stress caused by arsenate.  相似文献   

19.
This hydroponic experiment was conducted to determine the effects of nitrogen (N) and phosphorus (P) levels and frond-harvesting on the effectiveness of arsenic (As)-hyperaccumulator Chinese brake fern (Pteris vittata L.) to remove As from contaminated groundwater collected from south Florida. Three-month old ferns were grown in 38-L plastic tanks (two ferns per tank) containing 30-L of As-contaminated water (130 μg·L?1 As), which was amended with modified 0.25 strength Hoagland's solution #2. Two N (26 or 52 mg·L?1) and two P levels (1.2 and 2.4 mg·L?1) were tested in one experiment, whereas the effect of frond-harvesting was tested in a separate experiment. Initially, N had little effect on plant As removal whereas low P treatment was more effective than high P and As was reduced to <5 μg·L?1 in 28 d compared to 35 d. For well-established ferns, N and P levels had little effect. Reused fern, with or without harvesting the As-rich fronds, took up arsenic more rapidly so the As concentration in the groundwater declined faster (130 to ~10 μg·L?1 in 8 h). Regardless of the treatments, most As (85–93%) was located in the aboveground tissue (rhizomes and fronds). Frond As concentrations were higher for non-harvested ferns than for ferns where fronds were partially harvested prior to treatment. Conversely, rhizomes accumulated more arsenic in ferns where fronds had been partially harvested. Low-P treatment coupled with reuse of more established ferns with or without harvesting fronds can be used to effectively remove arsenic from contaminated water using P. vittata  相似文献   

20.
The interactive effects of selenium (Se) and arsenic (As) on plant uptake of Se and As have rarely been documented. In this study, the interactive effects of As and Se on their uptake by Chinese brake fern (Pteris vittata), an As-hyperaccumulator and Se-accumulator, were explored in two hydroponic experiments based on a two-factor, five-level central composite design. At Se levels of less than 2.5 mg L?1, increasing amounts of As stimulated the uptake of Se in Chinese brake fern roots, possibly because of the beneficial effects of Se. In contrast, at Se concentrations greater than 2.5 mg L?1, As suppressed the uptake of Se in Chinese brake fern roots. Uptake of As by both fronds and roots of Chinese brake fern was suppressed by the addition of Se, indicating the antagonistic effects of Se on As. In addition, at Se concentrations of less than 2.5 mg L?1, As stimulated the translocation of Se from roots to fronds; meanwhile, the addition of Se resulted in reduced translocation of As from roots to fronds. These findings demonstrate the interactive effects of As and Se on their uptake by Chinese brake fern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号