首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We report a new approach for the simultaneous conversion of xylose and glucose sugar mixtures into products by fermentation. The process simultaneously uses two substrate-selective strains of Escherichia coli, one which is unable to consume glucose and one which is unable to consume xylose. The xylose-selective (glucose deficient) strain E. coli ZSC113 has mutations in the glk, ptsG and manZ genes while the glucose-selective (xylose deficient) strain E. coli ALS1008 has a mutation in the xylA gene. By combining these two strains in a single process, xylose and glucose are consumed more quickly than by a single-organism approach. Moreover, we demonstrate that the process is able to adapt to changing concentrations of these two sugars, and therefore holds promise for the conversion of variable sugar feed streams, such as lignocellulosic hydrolysates.  相似文献   

2.
ABSTRACT: BACKGROUND: The efficient microbial utilization of lignocellulosic hydrolysates has remained challenging because this material is composed of multiple sugars and also contains growth inhibitors such as acetic acid (acetate). Using an engineered consortium of strains derived from Escherichia coli C and a synthetic medium containing acetate, glucose, xylose and arabinose, we report on both the microbial removal of acetate and the subsequent simultaneous utilization of the sugars. RESULTS: In a first stage, a strain unable to utilize glucose, xylose and arabinose (ALS1392, strain E. coli C ptsG manZ glk crr xylA araA) removed 3 g/L acetate within 30 hours. In a subsequent second stage, three E. coli strains (ALS1370, ALS1371, ALS1391), which are each engineered to utilize only one sugar, together simultaneously utilized glucose, xylose and arabinose. The effect of non-metabolizable sugars on the metabolism of the target sugar was minimal. Additionally the deletions necessary to prevent the consumption of one sugar only minimally affected the consumption of a desired sugar. For example, the crr deletion necessary to prevent glucose consumption reduced xylose and arabinose utilization by less than 15 % compared to the wild-type. Similarly, the araA deletion used to exclude arabinose consumption did not affect xylose- and glucose-consumption. CONCLUSIONS: Despite the modest reduction in the overall rate of sugar consumption due to the various deletions that were required to generate the consortium of strains, the approach constitutes a significant improvement in any single-organism approach to utilize sugars found in lignocellulosic hydrolysate in the presence of acetate.  相似文献   

3.
Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture.  相似文献   

4.
Currently, microbial conversion of lignocellulose‐derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome‐scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole‐genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next‐generation biofuels.  相似文献   

5.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

6.
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E. coli gene xylB (strain CRX2). These genes were provided on a high-copy-number plasmid and were under the control of the constitutive promoter trc derived from plasmid pTrc99A. Both recombinant strains were able to grow in mineral medium containing xylose as the sole carbon source, but strain CRX2 grew faster on xylose than strain CRX1. We previously reported the use of oxygen deprivation conditions to arrest cell replication in C. glutamicum and divert carbon source utilization towards product production rather than towards vegetative functions (M. Inui, S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertès, and H. Yukawa, J. Mol. Microbiol. Biotechnol. 7:182-196, 2004). Under these conditions, strain CRX2 efficiently consumed xylose and produced predominantly lactic and succinic acids without growth. Moreover, in mineral medium containing a sugar mixture of 5% glucose and 2.5% xylose, oxygen-deprived strain CRX2 cells simultaneously consumed both sugars, demonstrating the absence of diauxic phenomena relative to the new xylA-xylB construct, albeit glucose-mediated regulation still exerted a measurable influence on xylose consumption kinetics.  相似文献   

7.
8.
Use of agricultural biomass, other than corn-starch, to produce fuel ethanol requires a microorganism that can ferment the mixture of sugars derived from hemicellulose. Escherichia coli metabolizes a wide range of substrates and has been engineered to produce ethanol in high yield from sugar mixtures. E. coli metabolizes glucose in preference to other sugars and, as a result, utilization of the pentoses in hemicellulose-derived sugar mixtures is delayed and may be incomplete. Residual sugar lowers the ethanol yield and is problematic for downstream processing of fermentation products. Therefore, a catabolite repression mutant that simultaneously utilizes glucose and pentoses would be useful for fermentation of complex substrate mixtures. We constructed ethanologenic E. coli strains with a glucose phosphotransferase (ptsG) mutation and used the mutants to ferment glucose, arabinose, and xylose, singly and in mixtures, to ethanol. Yields were 87-94% of theoretical for both the wild type and mutants, but the mutants had an altered pattern of mixed sugar utilization. Phosphotransferase mutants metabolized the pentoses simultaneously with glucose, rather than sequentially. Based upon fermentations of sugar mixtures, a catabolite-repression mutant of ethanologenic E. coli is expected to provide more efficient fermentation of hemicellulose hydrolysates by allowing direct utilization of pentoses.  相似文献   

9.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

10.
Plant biomass possesses a huge potential as a source for biofuel production. The main components of biomass are glucose and five-carbon sugar xylose. The yeast Saccharomyces cerevisiae that is used for industrial ethanol production from glucose is unable to xylose fermentation. Therefore a microorganism capable for efficient fermentation of both glucose and xylose has to be found in nature or constructed for economically feasible biomass conversion to ethanol. The active xylose fermentation could be performed by increasing the efficiency of initial stages of xylose metabolism. In this review the enzymes of initial stages of xylose metabolism in yeasts (xylose reductase, xylitol dehydrogenase, xylulokinase) and bacteria (xylose isomerase and xylulokinase) are characterized. The ways for construction of yeast strains capable of efficient alcoholic xylose fermentation are discussed.  相似文献   

11.
Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.  相似文献   

12.
Natural ability to ferment the major sugars (glucose and xylose) of plant biomass is an advantageous feature of Escherichia coli in biofuel production. However, excess glucose completely inhibits xylose utilization in E. coli and decreases yield and productivity of fermentation due to sequential utilization of xylose after glucose. As an approach to overcome this drawback, E. coli MG1655 was engineered for simultaneous glucose (in the form of cellobiose) and xylose utilization by a combination of genetic and evolutionary engineering strategies. The recombinant E. coli was capable of utilizing approximately 6 g/L of cellobiose and 2 g/L of xylose in approximately 36 h, whereas wild-type E. coli was unable to utilize xylose completely in the presence of 6 g/L of glucose even after 75 hours. The engineered strain also co-utilized cellobiose with mannose or galactose; however, it was unable to metabolize cellobiose in the presence of arabinose and glucose. Successful cellobiose and xylose co-fermentation is a vital step for simultaneous saccharification and co-fermentation process and a promising step towards consolidated bioprocessing.  相似文献   

13.
The conversion of variable sugar mixtures into biochemicals poses a challenge for a single microorganism. For example, succinate has not been effectively generated from mixtures of glucose and xylose. In this work, a consortium of two Escherichia coli strains converted xylose and glucose to succinate in a dual phase aerobic/anaerobic process. First, the optimal pathway from xylose or glucose to succinate was determined by expressing either heterologous pyruvate carboxylase or heterologous adenosine triphosphate‐forming phosphoenol pyruvate (PEP) carboxykinase. Expression of PEP carboxykinase (pck) resulted in higher yield (0.86 g/g) and specific productivity (155 mg/gh) for xylose conversion, while expression of pyruvate carboxylase (pyc) resulted in higher productivity (76 mg/gh) for glucose conversion. Then, processes using consortia of the two optimal xylose‐selective and glucose‐selective strains were designed for two different feed ratios of glucose/xylose. In each case the consortia generated over 40 g/L succinate efficiently with yields greater than 0.90 g succinate/g total sugar. This study demonstrates two advantages of microbial consortia for the conversion of sugar mixtures: each sugar‐to‐product pathway can be optimized independently, and the volumetric consumption rate for each sugar can be controlled independently, for example, by altering the biomass concentration of each consortium member strain.  相似文献   

14.
Acetic acid is an unavoidable constituent of the biomass hydrolysates generated from acetylated hemicellulose and lignin, and acetate affects the performance of microbes used to convert these hydrolysates into biofuels or other biochemicals. In this study, acetate was selectively removed from synthetic mixtures of glucose and xylose using metabolically engineered Escherichia coli strains having mutations in the glucose phosphotransferase system (PTS) genes (ptsG, manZ, crr), glucokinase (glk), and xylose (xylA). In batch culture, ALS1060 (ptsG manZ glk xylA) consumed exclusively acetate to depletion, and then consumed the two sugars only at a very slow rate (a growth rate of about 0.01 h−1). We also examined the effects of an additional knockout of either malX, fruA, fruB, bglF, or crr, genes that are involved in other PTSs, and a batch process using KD840 (ptsG manZ glk crr xylA) demonstrated a further reduction in glucose or xylose consumption by E. coli. These results demonstrate the feasibility of using a substrate-selective approach for the pre-treatment of biomass hydrolysate for microbial processes.  相似文献   

15.
The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway of d-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes, xylA, encoding xylose isomerase, and xylB, encoding xylulokinase from Streptomyces lividans TK23, under the control of the tac promoter with an Escherichia coli-Rhodococcus shuttle vector. The recombinant R. jostii RHA1 bearing xylA could grow on xylose as the sole carbon source, and additional expression of xylB further improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strain R. opacus PD630 by expression of xylA and xylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants of R. jostii RHA1 and R. opacus PD630 carrying xylA and xylB represented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains.  相似文献   

16.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

17.
18.
The co-utilization of sugars, particularly xylose and glucose, during industrial fermentation is essential for economically feasible processes with high ethanol productivity. However, the major problem encountered during xylose/glucose co-fermentation is the lower consumption rate of xylose compared with that of glucose fermentation. Here, we therefore attempted to construct high xylose assimilation yeast by using industrial yeast strain with high β-glucosidase activity on the cell surface. We first constructed the triple auxotrophic industrial strain OC2-HUT and introduced four copies of the cell-surface-displaying β-glucosidase (BGL) gene and two copies of a xylose-assimilating gene into its genome to generate strain OC2-ABGL4Xyl2. It was confirmed that the introduction of multiple copies of the BGL gene increased the cell-surface BGL activity, which was also correlated to the observed increase in xylose-assimilating ability. The strain OC2-ABGL4Xyl2 was able to consume xylose during cellobiose/xylose co-fermentation (0.38 g/h/g-DW) more rapidly than during glucose/xylose co-fermentation (0.18 g/h/g-DW). After 48 h, 5.77% of the xylose was consumed despite the co-fermentation conditions, and the observed ethanol yield was 0.39 g-ethanol/g-total sugar. Our results demonstrate that a BGL-displaying and xylose-assimilating industrial yeast strain is capable of efficient xylose consumption during the co-fermentation with cellobiose. Due to its high performance for fermentation of mixtures of cellobiose and xylose, OC2-ABGL4Xyl2 does not require the addition of β-glucosidase and is therefore a promising yeast strain for cost-effective ethanol production from lignocellulosic biomass.  相似文献   

19.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号