首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific activities of phosphomannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophosphorylase (GMP), and GDP-mannose dehydrogenase (GMD) were compared in a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa and in two spontaneous nonmucoid revertants. In both revertants some or all of the alginate biosynthetic enzymes we examined appeared to be repressed, indicating that the loss of the mucoid phenotype may be a result of decreased formation of sugar-nucleotide precursors. The introduction and overexpression of the cloned P. aeruginosa phosphomannose isomerase (pmi) gene in both mucoid and nonmucoid strains led not only to the appearance of PMI levels in cell extracts several times higher than those present in the wild-type mucoid strain, but also in higher PMM and GMP specific activities. In extracts of both strains, however, the specific activity of GMD did not change as a result of pmi overexpression. In contrast, the introduction of the cloned Escherichia coli manA (pmi) gene in P. aeruginosa caused an increase in only PMI and PMM activities, having no effect on the level of GMP. This suggests that an increase in PMI activity alone does not induce high GMP activity in P. aeruginosa. The heterologous overexpression of the P. aeruginosa pmi gene in the E. coli manA mutant CD1 led to the appearance in cell extracts of not only PMI activity but also GMP activity, both of which are normally undetectable in extracts of CD1. We discuss the implications of these results and propose a mechanism by which overexpression of the P. aeruginosa pmi gene can cause an elevation in both PMM and GMP activities.  相似文献   

2.
Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.  相似文献   

3.
The polysaccharide capsule surrounding Cryptococcus neoformans comprises manose, xylose and glucuronic acid, of which mannose is the major constituent. The GDP-mannose biosynthesis pathway is highly conserved in fungi and consists of three key enzymes: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMP). The MAN1 gene, encoding for the PMI enzyme, was isolated and sequenced from C. neoformans, and a disruption of the MAN1 gene was generated. One MAN1 disruption mutant, man1, which showed poor capsule formation, reduced polysaccharide secretion and morphological abnormalities, was chosen for virulence studies. In both the rabbit and the mouse models of invasive cryptococcosis, man1 was shown to be severely impaired in its virulence, with complete elimination of the yeast from the host. A reconstituted strain of man1 was constructed using gene replacement at the native locus. The wild-type and reconstituted strains were significantly more virulent than the knock-out mutant in both animal models. Our findings reveal that PMI activity is essential for the survival of C. neoformans in the host. The fact that the man1 mutant was not pathogenic suggests that blocking mannose synthesis could be fungicidal in the mammalian host and thus an excellent target for antifungal drug development.  相似文献   

4.
Lee HJ  Chang HY  Venkatesan N  Peng HL 《FEBS letters》2008,582(23-24):3479-3483
Phosphomannose isomerase (PMI) plays a pivotal role in biosynthesis of GDP-mannose, an important precursor of many polysaccharides. We demonstrate in this study that Pseudomonas aeruginosa pslB encodes a protein with GDP-mannose pyrophosphorylase/PMI dual activities. The PMI activity is Co2+-dependent and could be inhibited by GDP-mannose in a competitive manner. Furthermore, the activity could be inactivated by 2,3-butanedione suggesting the presence of a catalytic Arg residue. Site-specific mutations at R373, R472, R479, E410, H411, N433 and E458 increase the KM approximately 8-20-fold. The PMI activity of PslB was completely diminished with a R408K or R408A, reflecting the importance of this residue in catalysis. Overall, these results provide a basis for understanding the catalytic mechanism of PMI.  相似文献   

5.
6.
Recent work has uncovered genes for two glycosyltransferases that are thought to catalyze mannosylation of mycosaminyl sugars of polyene macrolides. These two genes are nypY from Pseudonocardia sp. strain P1 and pegA from Actinoplanes caeruleus. Here we analyze these genes by heterologous expression in various strains of Streptomyces nodosus, producer of amphotericins, and in Streptomyces albidoflavus, which produces candicidins. The NypY glycosyltransferase converted amphotericins A and B and 7-oxo-amphotericin B to disaccharide-modified forms in vivo. The enzyme did not act on amphotericin analogs lacking exocyclic carboxyl or mycosamine amino groups. Both NypY and PegA acted on candicidins. This work confirms the functions of these glycosyltransferases and provides insights into their acceptor substrate tolerance. Disaccharide-modified polyenes may have potential as less toxic antibiotics.  相似文献   

7.
Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.  相似文献   

8.
9.
Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D -mannuronic acid residues of alginate and the D -rhamnose (D -Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D -mannose (D -Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D -Rha, have been localized to the 5′ end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D -Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D -Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D -Man, which is converted to GDP-D -Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D -Man to GDP-D -Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D -Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L -rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.  相似文献   

10.
J.H. LEITÃO AND i. SÁ-CORREIA. 1993. The manipulation of the alginate pathway in two Pseudomonas aeruginosa mucoid variants was attempted at growth temperatures within the range 20C-40C. This was carried out by increasing the level of either phosphomannose isomerase (PMI) and GDP-mannose pyrophosphorylase (GMP) or GDP-mannose dehydrogenase (GMD) encoded by algA or algD respectively, present in recombinant plasmids derived from the controlled expression vector pMMB24. The specific growth rate of cells expressing either algA or algD genes from recombinant plasmids was lower than that of cells harbouring the cloning vector only. Stimulation of alginate synthesis was observed when the expression of the alginate genes was low, in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The further increase of the level of alginate enzymes in induced cells, without the simultaneous increase of other limiting steps, had no positive effect on the strictly regulated alginate pathway. Temperature profiles for alginate synthesis were modified reflecting changes in rate limiting steps. Limitations on the polymerization ability and the competition between cell growth and alginate synthesis were possibly involved in the modification of the temperature profiles for alginate production, or in the decrease of the molecular weight of polymers produced by recombinants under conditions that led to highly active alginate synthesis. The acetyl content of alginates produced by the recombinants was higher than that of the biopolymer controls, possibly due to the higher acetyl-CoA availability in slower growing cells.  相似文献   

11.
Congenital Disorders of Glycosylation (CDG) are human deficiencies in glycoprotein biosynthesis. Previous studies showed that 1 mM mannose corrects defective protein N-glycosylation in cultured fibroblasts from some CDG patients. We hypothesized that these CDG cells have limited GDP-mannose (GDP-Man) and that exogenous mannose increases the GDP-Man levels. Using a well established method to measure GDP-Man, we found that normal fibroblasts had an average of 23.5 pmol GDP-Man/10(6) cells, whereas phosphomannomutase (PMM)-deficient fibroblasts had only 2.3-2.7 pmol/10(6) cells. Adding 1 mM mannose to the culture medium increased the GDP-Man level in PMM-deficient cells to approximately 15.5 pmol/10(6) cells, but had no significant effect on GDP-Man levels in normal fibroblasts. Similarly, mannose supplementation increased GDP-Man from 4.6 pmol/10(6) cells to 24.6 pmol/10(6) cells in phosphomannose isomerase (PMI)-deficient fibroblasts. Based on the specific activity of the GDP-[(3)H]Man pool present in [2-(3)H]mannose labeled cells, mannose supplementation also partially corrected the impaired synthesis of mannosylphosphoryldolichol (Man-P-Dol) and Glc(0)(-)(3)Man(9)GlcNAc(2)-P-P-Dol. These results confirm directly that deficiencies in PMM and PMI result in lowered cellular GDP-Man levels that are corrected by the addition of mannose. In contrast to these results, GDP-Man levels in fibroblasts from a CDG-Ie patient, who is deficient in Man-P-Dol synthase, were normal and unaffected by mannose supplementation even though mannose addition was found to correct abnormal lipid intermediate synthesis in another study (Kim et al. [2000] J. Clin. Invest., 105, 191-198). The mechanism by which mannose supplementation corrects abnormal protein N-glycosylation in Man-P-Dol synthase deficient cells is unknown, but this observation suggests that the regulation of Man-P-Dol synthesis and utilization may be more complex than is currently understood.  相似文献   

12.
Phosphomannose isomerases (PMIs) in bacteria and fungi catalyze the reversible conversion of D-fructose-6-phosphate to D-mannose-6-phosphate during biosynthesis of GDP-mannose, which is the main intermediate in the mannosylation of important cell wall components, glycoproteins, and certain glycolipids. In the present study, the kinetic parameters of PMI from Streptomyces coelicolor were obtained, and its function on antibiotic production and sporulation was studied. manA (SCO3025) encoding PMI in S. coelicolor was deleted by insertional inactivation. Its mutant (S. coelicolor?manA) was found to exhibit a bld-like phenotype. Additionally, S. coelicolor?manA failed to produce the antibiotics actinorhodin and red tripyrolle undecylprodigiosin in liquid media. To identify the function of manA, the gene was cloned and expressed in Escherichia coli BL21 (DE3). The purified recombinant ManA exhibited PMI activity (K(cat)/K(m) (mM(-1) s(-1) = 0.41 for D-mannose-6-phosphate), but failed to show GDP-D-mannose pyrophosphorylase [GMP (ManC)] activity. Complementation analysis with manA from S. coelicolor or E. coli resulted in the recovery of bld-like phenotype of S. coelicolor?manA. SCO3026, another ORF that encodes a protein with sequence similarity towards bifunctional PMI and GMP, was also tested for its ability to function as an alternate ManA. However, the purified protein of SCO3026 failed to exhibit both PMI and GMP activity. The present study shows that enzymes involved in carbohydrate metabolism could control cellular differentiation as well as the production of secondary metabolites.  相似文献   

13.
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos.  相似文献   

14.
Electron microscopic observations of wheat premeiocytes in premeiotic mitosis (PMM) and premeiotic interphase (PMI) are reported. In archesporial cells of columns at last PMM there is a significant increase in activity of endoplasmic reticulum. Characteristic states of chromatin of premeiocyte nuclei in the stages of PMI are illustrated. Changes in the primary walls of PMCs at Stage 1, PMI, precede the formation of callose in Stage 2. In general, callose deposition throughout the PMC column follows the pattern described elsewhere in Sorghum and other Gramineae. The behavior of the plasmalemma during callose synthesis resembles that described elsewhere in Cucurbita. A role for the cell endomembrane system in callose synthesis is suggested. Blebs arising from the inner membrane of the nuclear envelope, described elsewhere in endosperm cells of wheat and by us in wheat PMCs in this report, give rise to vesicles which carry nuclear material into the cell cytoplasm. Differences in this transport mechanism as it appears in the two tissue systems are described.  相似文献   

15.
The enzymes phosphomannomutase (PMM), phospho‐N‐acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N‐acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose‐phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.  相似文献   

16.
Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.  相似文献   

17.
Congenital disorders of glycosylation (CDG) are a group of multisystemic disorders resulting from defects in the synthesis and processing of N-linked oligosaccharides. The most common form, CDG type Ia (CDG-Ia), results from a deficiency of the enzyme phosphomannomutase (PMM). PMM converts mannose 6-phosphate (man-6-P) to mannose-1-phosphate (man-1-P), which is required for the synthesis of GDP-mannose, a substrate for dolichol-linked oligosaccharide synthesis. The traditional assay for PMM, a coupled enzyme system based on the reduction of NADP(+) to NADPH using man-1-P as a substrate, has limitations in accuracy and reproducibility. Therefore, a more sensitive, direct test for PMM activity, based on the detection of the conversion of man-1-P to man-6-P by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), was developed. Using this assay, the activity of PMM was markedly deficient in fibroblasts and lymphoblasts from 23 patients with CDG-Ia (range 0-15.3% of control, average 4.9+/-4.7%) and also decreased in seven obligate heterozygotes (range 33.0-72.0% of control, average 52.2+/-14.7%). Unlike the spectrophotometric method, there was no overlap in PMM activity among patients, obligate heterozygotes, or controls. Thus, the PMM assay based on HPAEC-PAD has increased utility in the clinical setting, and can be used, together with transferrin isoelectric focusing, to diagnose patients with CDG-Ia and to identify heterozygotes when clinically indicated.  相似文献   

18.
Carbohydrate-deficient-glycoprotein syndrome type 1 (CDG1; also known as "Jaeken syndrome") is an autosomal recessive disorder characterized by defective glycosylation. Most patients show a deficiency of phosphomannomutase (PMM), the enzyme that converts mannose 6-phosphate to mannose 1-phosphate in the synthesis of GDP-mannose. The disease is linked to chromosome 16p13, and mutations have recently been identified in the PMM2 gene in CDG1 patients with a PMM deficiency (CDG1A). The availability of the genomic sequences of PMM2 allowed us to screen for mutations in 56 CDG1 patients from different geographic origins. By SSCP analysis and by sequencing, we identified 23 different missense mutations and 1 single-base-pair deletion. In total, mutations were found on 99% of the disease chromosomes in CDG1A patients. The R141H substitution is present on 43 of the 112 disease alleles. However, this mutation was never observed in the homozygous state, suggesting that homozygosity for these alterations is incompatible with life. On the other hand, patients were found homozygous for the D65Y and F119L mutations, which must therefore be mild mutations. One particular genotype, R141H/D188G, which is prevalent in Belgium and the Netherlands, is associated with a severe phenotype and a high mortality. Apart from this, there is only a limited relation between the genotype and the clinical phenotype.  相似文献   

19.
20.
The rfbO9 gene cluster, which is responsible for the synthesis of the lipopolysaccharide O9 antigen, was cloned from Escherichia coli O9:K30. The gnd gene, encoding 6-phosphogluconate dehydrogenase, was identified adjacent to the rfbO9 cluster, and by DNA sequence analysis the gene order gnd-rfbM-rfbK was established. This order differs from that described for other members of the family Enterobacteriaceae. Nucleotide sequence analysis was used to identify the rfbK and rfbM genes, encoding phosphomannomutase and GDP-mannose pyrophosphorylase, respectively. In members of the family Enterobacteriaceae, these enzymes act sequentially to form GDP-mannose, which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. In the E. coli O9:K30 strain, a duplicated rfbM2-rfbK2 region was detected approximately 3 kbp downstream of rfbM1-rfbK1 and adjacent to the remaining genes of the rfbO9 cluster. The rfbM isogenes differed in upstream flanking DNA but were otherwise highly conserved. In contrast, the rfbK isogenes differed in downstream flanking DNA and in 3'-terminal regions, resulting in slight differences in the sizes of the predicted RfbK proteins. RfbMO9 and RfbKO9 are most closely related to CpsB and CpsG, respectively. These are isozymes of GDP-mannose pyrophosphorylase and phosphomannomutase, respectively, which are thought to be involved in the biosynthesis of the slime polysaccharide colanic acid in E. coli K-12 and Salmonella enterica serovar Typhimurium. An E. coli O-:K30 mutant, strain CWG44, lacks rfbM2-rfbK2 and has adjacent essential rfbO9 sequences deleted. The remaining chromosomal genes are therefore sufficient for GDP-mannose formation and K30 capsular polysaccharide synthesis. A mutant of E. coli CWG44, strain CWG152, was found to lack GDP-mannose pyrophosphorylase and lost the ability to synthesize K30 capsular polysaccharide. Wild-type capsular polysaccharide could be restored in CWG152, by transformation with plasmids containing either rfbM1 or rfbM2. Introduction of a complete rfbO9 gene cluster into CWG152 restored synthesis of both O9 and K30 polysaccharides. Consequently, rfbM is sufficient for the biosynthesis of GDP-mannose for both O antigen and capsular polysaccharide E. coli O9:K30. Analysis of a collection of serotype O8 and O9 isolates by Southern hybridization and PCR amplification experiments demonstrated extensive polymorphism in the rfbM-rfbK region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号