首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52), a composition of chitinases, cooperates with endo-chitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine (NAG). NAGase from prawn (Penaeus vannamei) is involved in digestion and molting processes. The investigation of enzymatic properties, functional groups and catalytic mechanism is an essential mission to its commercial application. Bromacetic acid (BrAc) is a specific modifier for the histidine residue in specific condition. In this paper, the effect of BrAc on prawn NAGase activity for the hydrolysis of pNP-NAG has been investigated. The results showed that BrAc can reversibly and non-competitively inhibit the enzyme activity at appropriate concentrations and the value of IC(50) was estimated to be 17.05+/-0.65 mM. The inhibition kinetics of the enzyme by BrAc has been studied using the kinetic method of the substrate reaction. And the inhibition model was set up and the microscopic rate constants for the reaction of the inhibitor with free enzyme and the enzyme-substrate complexes were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)), which is 1.25 x 10(-3)s(-1), is about eight times as much as that of the reverse reactivation (k(-0)), which is 1.64 x 10(-4)s(-1). Therefore, when the BrAc concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

2.
The effects of hydrogen peroxide (H2O2) on prawn NAGase activity for the hydrolysis of pNP-beta-D-GlcNAc have been studied. The results show that H2O2 can reversible inhibit the enzyme (IC50 = 0.85 M) and the inhibition is of a mixed type. The kinetics show that k+o is much larger than k+0, indicating the free enzyme is more susceptible than the enzyme-substrate complex in the H2O2 solution. It is suggested that the presence of the substrate offers marked protection against inhibition by H202. Changes of activity and conformation of the enzyme in different concentrations of H202 have been compared by measuring the fluorescence spectra and residual activity and show that the change of conformation is more rapidly than that of the residual activity, which implies that the whole conformation of the enzyme changes more rapidly than the conformation of the active centre of the enzyme in the H2O2 solution.  相似文献   

3.
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.  相似文献   

4.
β-N-乙酰-D-氨基葡萄糖苷酶与南美白对虾的食物消化吸收、蜕壳生长有着密切关系. 海水里存在的有机污染物将影响酶生理功能, 从而进一步影响虾的正常蜕壳,严重将导致对虾的死亡. 醋酸酐是常用的有机溶剂, 故本文应用动力学方法研究醋酸酐对南美白对虾β-N-乙酰-D-氨基葡萄糖苷酶催化pNP-NAG水解时酶活力的变化规律. 表明在醋酸酐浓度低于20.0 mmol/L, 酶的抑制作用是可逆的, 测得醋酸酐对酶抑制的IC50为9.0 mmol/L. 用双倒数作图法测定醋酸酐与游离酶(E)和酶-底物络合物(ES)的结合平衡常数, 结果显示醋酸酐是酶的非竞争性抑制剂. 用底物反应动力学方法观测在不同底物浓度下酶在0.0、3.0、6.0、9.0、12.0 mmol/L的醋酸酐溶液中的失活过程,分别测定了酶的微观失活速度常数k+0及复活速度常数k-0, 结果表明醋酸酐对酶的影响是快速结合再缓慢失活的过程. 比较微观失活速度常数k+0及复活速度常数k-0, 结果暗示在高浓度的醋酸酐溶液中, 酶将完全失活.  相似文献   

5.
The Tsou method was used to study the kinetic course of inactivation of green crab alkaline phosphatase by zinc ions. The results show that the enzyme was inactivated by a complexing scheme which has not been previously identified. The enzyme first reversibly and quickly binds Zn(2+) and then undergoes a slow reversible course to inactivation and slow conformational change. The inactivation reaction is a single molecule reaction and the apparent inactivation rate constant is for a saturated reaction being independent of Zn(2+) concentration if the concentration is sufficiently high. The microscopic rate constants of inactivation and the association constant were determined from the measurements.  相似文献   

6.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme which catalyzes the nonspecific hydrolysis of phosphate monoesters. Some pollutants in seawater affect the enzyme activity causing loss of the biological function of the enzyme, which affects the exuviating crab-shell and threatens the survival of the animal. The present paper studies the effects of thiohydroxyal compounds on the activity of green crab alkaline phosphatase. The results show that thiohydroxyal compounds can lead to reversible inhibition. The equilibrium constants have been determined for dithiothreitol (DTT) and mercaptoethanol (ME) binding with the enzyme and/or the enzyme-substrate complexes. The results show that both DTT and ME are non-competitive inhibitors. The kinetics of enzyme inactivation by ME at low concentrations has been studied using the kinetic method of the substrate reaction. The results suggest that at pH 10.0, the action of ME on green crab ALP is first quick equilibrium binding and then slow inactivation. The microscopic rate constants were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)) is much larger than that of the reverse reactivation (k(-0)). Therefore, when the ME concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

7.
1. alpha-d-Mannosidase from rat epididymis was purified 300-fold. beta-N-Acetyl-glucosaminidase and beta-galactosidase were removed from the preparation by treatment with pyridine. Zn(2+) was added during the purification to stabilize the alpha-mannosidase. 2. Mammalian alpha-mannosidase is most stable at pH6. At lower pH values it undergoes reversible spontaneous inactivation. The enzyme is also subject to irreversible inactivation, which is delayed by the addition of albumin. 3. Reversible inactivation of alpha-mannosidase is accelerated by EDTA and reversed or prevented by Zn(2+). Other cations, such as Co(2+), Cd(2+) and Cu(2+), accelerate inactivation and the action of a toxic cation can be prevented by Zn(2+) or by EDTA in suitable concentration. 4. The enzyme is stabilized by substrate and neither Zn(2+), EDTA nor a toxic cation has more than a small effect in the assay of an untreated preparation. The addition of Zn(2+) is necessary, however, for a constant rate of hydrolysis during prolonged incubation of the enzyme with substrate. In an EDTA-treated preparation, Zn(2+) reactivates the enzyme during the assay. 5. Evidence is presented that alpha-mannosidase is a dissociable Zn(2+)-protein complex, in which Zn(2+) is essential for enzyme activity.  相似文献   

8.
beta-N-Acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) catalyzes the cleavage of N-acetylglucosamine polymers. It is in the composition of the chitinases and cooperates with endo-chitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine. In this work, the effects of dioxane on the enzyme activity for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide from the prawn (Penaeus vannamei) have been studied. The results show that appropriate concentrations of dioxane can lead to reversible inactivation of the enzyme, and the IC(50) is estimated to be 1.1 M. The kinetics of inactivation of NAGase in the appropriate concentrations of dioxane solution has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The results show that the free enzyme molecule is more fragile than the enzyme-substrate complex in the dioxane solution. It is suggested that the presence of the substrate offers marked protection of this enzyme against inactivation by dioxane.  相似文献   

9.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

10.
Recombinant Escherichia coli cytosine deaminase is purified as a mixture of Zn(2+) and Fe(2+) forms of the enzyme. Fe(2+) is removed readily by o-phenanthroline to yield apoenzyme (apoCDase) that contains <0.2 mol of Zn(2+)per mol of subunit. ApoCDase was efficiently reconstituted to Zn(2+)CDase by treatment with ZnCl(2). The interaction of cytosine with apoCDase and Zn(2+)CDase was investigated at pH 7.5 and 25 degrees C by monitoring changes in intrinsic protein fluorescence. The values for the kinetic data K(1), k(2), and k(3) for Zn(2+)CDase were 0.25 mM, 80 s(-1), and 38 s(-1), respectively. The value for k(-2) was statistically indistinguishable from zero. The analogous values for K(1), k(2), and k(-2), (k(3)=0) for apoCDase were 0.157 mM, 186 s(-1) and approximately 0.8 s(-1), respectively. The overall dissociation constant of apoCDase for cytosine was 0.00069 mM, whereas the K(m) of Zn(2+)CDase for cytosine was 0.20 mM. The pre-steady state phase of the reaction was associated with an absorbance increase at 280 nm that was attributed to solvent perturbation of the spectrum of cytosine or enzyme. Formation of the Fe(2+)CDase-cytosine complex was too rapid to monitor by these techniques.  相似文献   

11.
Cysteine residues in prawn (Penaeus vannamei) β-N-acetyl-d-glucosaminidase (NAGase, EC 3.2.1.52) have been modified by p-chloromercuribenzoate (PCMB). The results show that sulfhydryl group is essential for the activity of the enzyme. Inactivation kinetics of the enzyme by mercuric chloride (HgCl2) has been studied using the kinetic method of the substrate reaction during inactivation of enzyme previously described by Tsou. The kinetic results show that the inactivation of the enzyme is an irreversible reaction. The microscopic rate constants for the reaction of Hg2+ with free enzyme and with the enzyme-substrate complex are determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by Hg2+. The above results suggest that the cysteine residue is essential for activity.  相似文献   

12.
Chemical pollution such as chromium and phenol in the sea water has been increasing in recent years in China sea. At the same time, marine shellfish such as prawn and crab are sensitive to this pollution. beta-N-acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52) catalyzes the cleavage the oligomers of N-acetylglucosamine (NAG) into the monomer. In this paper, the effects of phenol on the enzyme activity from green crab (Scylla serrata) for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) have been studied. The results showed that appropriate concentrations of phenol could lead to reversible inhibition on the enzyme and the inhibitor concentration leading to 50% activity lost, IC(50), was estimated to be 75.0+/-2.0 mM. The inhibitory kinetics of phenol on the enzyme in the appropriate concentrations of phenol has been studied using the kinetic method of substrate reaction. The time course of the enzyme for the hydrolysis of pNP-NAG in the presence of different concentrations of phenol showed that at each phenol concentration, the rate decreased with increasing time until a straight line was approached. The results show that the inhibition of the enzyme by phenol is a slow, reversible reaction with fractional remaining activity. The microscopic rate constants are determined for the reaction on phenol with the enzyme.  相似文献   

13.
Shi Y  Jiang Z  Han P  Zheng GX  Song KK  Chen QX 《Biochimie》2007,89(3):347-354
A beta-N-acetyl-D-glucosaminidase (NAGase) from the cabbage butterfly (Pieris rapae) was purified. The purified enzyme was a single band on polyacrylamide gel electrophoresis and the specific activity was determined to be 8715 U/mg. The molecular weight of whole enzyme was determined to be 106 kDa by gel filtration, and the result of SDS-PAGE showed that the enzyme was a heterodimer, which contained two subunits with different mass of 59.5 and 57.2 kDa. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were investigated to be at pH 6.2 and at 42 degrees C, respectively, and the Michaelis-Menten constant (K(m)) was determined to be 0.285 mM at pH 6.2 and 37 degrees C. The stability of the enzyme was investigated and the results showed that the enzyme was stable at the pH range from 4.0 to 9.0 and at the temperature below 45 degrees C. The activation energy was 83.86 kJ/mol. The reaction of this enzyme with pNP-NAG was judged to be Ordered Bi-Bi mechanism according to the inhibitory behaviors of the products. The ionization constant, pK(e), of ionizing group at the active site of the enzyme was found to be 5.20 at 39.0 degrees C, and the standard dissociation enthalpy (DeltaH(o)) was determined to be 2.18 kcal/mol. These results showed that the ionizing group of the enzyme active center was the carboxyl group. The results of chemical modification also suggested that carboxyl group was essential to the enzyme activity. Moreover, Zn(2+), Hg(2+), Cu(2+) had strongly inhibitory effects on the enzyme activity.  相似文献   

14.
beta-N-acetyl-d-glucosaminidase (NAGase, EC.3.2.1.52), a composition of the chitinases, catalyzes the cleavage of N-acetylglucosamine polymers into N-acetylglucosamine. In this paper, the effects of mercuric ion on the activity of NAGase from Penaeus vannamei for the hydrolysis of pNP-NAG have been studied. The results show that HgCl2 can lead to irreversible inactivation to this enzyme. The inactivation process follows a first-order reaction and the inactivation rate constants have been determined. The relationship between the inactivation rate constants and HgCl2 concentration has been studied and the result shows that only one molecule of HgCl2 binds to the enzyme molecule to lead the enzyme lose its activity. Moreover, the conformational changes of the enzyme inactivated by HgCl2 were studied by following changes in the intrinsic fluorescence emission and ultraviolet absorption spectra.  相似文献   

15.
Tricyclic antidepressants are moderately potent inhibitors of the plasma membrane Ca(2+)-ATPase activity measured in erythrocyte ghosts. For the calmodulin-activated activity, half-maximal inhibition was observed in the presence of 0.25 mM clomipramine. Desipramine, imipramine, and trimipramine show half-maximal inhibition in the range of 0.8 to 1 mM. The inhibition dependence on clomipramine concentration is the same whether the enzyme is activated by exogenous calmodulin or by tryptic digestion. A similar behavior was observed for desipramine. The inhibition mechanisms utilized by clomipramine and desipramine are different. The clomipramine effect is associated with the Ca(2+)-bound enzyme conformation and can be attributed to a decrease in the rate of phosphorylation by ATP. The desipramine effect appears more related to the Ca(2+)-free conformation, since the partial reaction involved in the release of inorganic phosphate is perturbed by this drug. There is also little or no effect of tricyclics on the enzyme's affinity for ligand (Ca(2+) or ATP) binding.  相似文献   

16.
Xu XL  Liu XH  Wu B  Liu Y  Liu WQ  Xie YS  Liu QL 《Biopolymers》2004,74(4):336-344
Acutolysin D isolated from the venom of Agkistrodon acutus is a protein of 44 kDa with marked hemorrhagic and proteolytic activities. The metal-ion- and pH-induced conformational changes of acutolysin D have been studied by following fluorescence and activity measurements. Here we provide evidence for the fact that native holo-acutolysin D adopts two different conformations, native state a, stable in the weak acidic pH range from 5.5 to 7.0 with low activity, and native state b, stable in the weak alkaline pH range from 8.0 to 9.0 with high activity. Holo-acutolysin D has an optimum pH of 9.0 for caseinolytic activity and a maximum fluorescence at pH 9.0. The protein adopts the most stable conformation at pH 9.0. The addition of 1 mM Zn(2+) shifts both the alkali-induced unfolding transition curve and the alkali-induced inactivation curve toward higher pH value but has little effect on the acid-induced unfolding transition curve. No obvious effects on the pH-induced unfolding transition curve and the pH-dependent activity curve have been observed after the addition of 1 mM Ca(2+) to holo-acutolysin D. The results indicate that Zn(2+) is essential for its CA, while Ca(2+) is not essential for its CA. Removal of Ca(2+) and Zn(2+) from the protein enhances its sensitivity to pH and significantly reduces its overall stability during acid-induced denaturation. The kinetic results of the demetalization of holo-acutolysin D show that the demetalization rate constant K(1) for a slower reaction linearly decreases with the pH increase from 5.0 to 9.0, while K(2) for the faster reaction linearly increases with the pH change from 5.0 to 7.0. It is also evident from the present work that the free Zn(2+)-induced inactivation in the pH range from 8.0 to 9.0 should be attributed to the effect of Zn(OH)(2) precipitation on the protein.  相似文献   

17.
The pH dependence of the maximum velocity of the reaction catalyzed by diphosphopyridine nucleotide (DPN) dependent isocitrate dehydrogenase indicates the requirement for the basic form of an ionizable group in the enzyme-substrate complex with a pK of 6.6. This pK is unaltered from 10 to 33 degrees C, suggesting the ionization of a carboxyl rather than an imidazolium ion. The enzyme is inactivated upon incubation with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide in the presence of glycinamide or glycine ethyl ester. This inactivation is dependent on pH and the rate constant (k) increases as the pH is decreased in the range 7.3 to 6.25. A plot of 1/(H+) vs. 1/k suggests that the enzyme is inactivated as a result of the modification of a single ionizable group in this pH range. The coenzyme DPN and substrate alpha-ketoglutarate do not affect the rate of inactivation. In contrast, manganous ion (2 mM) and isocitrate (60 mM) produce a sevenfold decrease in the rate constant. The allosteric activator ADP (1 mM) does not itself influence the rate of inactivation; however, it reduces the concentration of Mn2+ (1 mM) and isocitrate (20 mM) required to produce the same decrease in the inactivation constant. These observations imply that the modification occurs at the substrate-binding site. Experiments employing [1-14C]glycine ethyl ester show a net incorporation of 2 mol of glycine ethyl ester per subunit (40 000), concomitant with the complete inactivation of the enzyme. The radioactive modified enzyme, after removal of excess reagent by dialysis, was exhaustively digested with proteolytic enzymes. High voltage electrophoretic analyses of the hydrolysate at pH 6.4 and 3.5 yield two major radioactive spots with approximately equal intensity, which correspond to gamma-glutamylglycine and beta-aspartylglycine, the ultimate products of reaction with glutamic and aspartic acids, respectively. Modification in the presence of manganous ion and isocitrate results in significant reduction in the incorporation of radioactivity into the two dipeptides. These results suggest that carbodiimide attacks one glutamyl and one aspartyl residue per subunit of the enzyme and that the integrity of these residues is crucial for the enzymatic activity.  相似文献   

18.
钙离子在江浙蝮蛇毒酸性磷脂酶A_2中的作用是多方面的。它不仅能够引起酸性磷脂酶A_2在溶液中构象的变化,而且对该酶活性有较大的影响。Ca~(2+)为酶活力所必需,当Ca~(2+)浓度达到0.06mmol/L时,酶表现出很高的活力;Ca~(2+)浓度超过0.5mmol/L时,催化反应出现一个明显的延滞期。化学修饰表明His_(47)在表现活力方面起重要作用,Ca~(2+)的存在可降低其修饰反应的速度,提示这是由于Ca~(2+)引起构象发生变化而造成的。  相似文献   

19.
The interaction of sarcoplasmic reticulum Ca(2+)-ATPase with the Mg.ATP analogues Rh(H2O)4ATP and Co(NH3)4ATP have been examined. Co(NH3)4ATP slowly inactivates Ca(2+)-ATPase in a first order process, with a rate constant of 1.13 x 10(-3) s-1 and an apparent inactivation constant, KI, of 32 mM. Rh(H2O)4ATP likewise inactivates sarcoplasmic reticulum Ca(2+)-ATPase, but the plot of reciprocal apparent inactivation rate constants versus 1/[Rh(H2O)4ATP] is biphasic. The chi-intercepts of this plot yield apparent inactivation constants for the inhibition of Ca(2+)-ATPase by Rh(H2O)4ATP of KI1 = 30 microM and KI2 = 221 microM. The corresponding values of k2, the maximal first-order rate constant for inhibition in these two phases, are 1.16 and 2.19 x 10(-4)s-1. Tridentate Rh(H2O)3ATP also inhibits Ca(2+)-ATPase, but only after much longer incubation times. Ca(2+)-ATPase inactivation is accompanied by incorporation of radioactivity from gamma-32P into an acid-precipitable enzyme. Both processes were dependent on the presence of Ca2+ ions and were quenched by excess ATP. The first-order rate constant for inactivation of Ca(2+)-dependent ATPase activity in this experiment was 2.19 x 10(-4)s-1, and the first-order rate constant for Ca(2+)-dependent E-P formation was 2.07 x 10(-4)s-1, in excellent agreement with the value for inactivation. A linear relationship is observed between ATPase inactivation and E-P formation. Moreover, atomic absorption analysis demonstrates that the phosphorylation of Ca(2+)-ATPase by Rh(H2O)4ATP is accompanied by incorporation and tight binding of rhodium, with a stoichiometry of one rhodium incorporated per ATPase molecule phosphorylated. The characteristics of ATPase inactivation and phosphorylation (i.e., Ca2+ dependence, ATP competition, agreement of rate constants, and stoichiometric rhodium incorporation) suggest that Rh(H2O)4ATP is binding to the catalytic nucleotide site on Ca(2+)-ATPase and producing a highly stable, phosphorylated intermediate.  相似文献   

20.
When human fibroblast collagenase was incubated with ClCH2CO-(N-OH)Leu-Ala-Gly-NH2 (2-5 mM) in Tris buffer, pH 7.4 at 25 degrees C, a slow, time-dependent inhibition of the enzyme was observed. Dialysis against a buffer to remove free inhibitor did not reactivate the enzyme. A reversible competitive inhibitor, phthaloyl-GlyP-Ile-Trp-NHBzl (50 microM) partially protected the enzyme from inactivation by the compound. From the concentration dependent rates of inactivation Ki = 0.5 +/- 0.1 mM and k3, the rate constant for inactivation = 3.4 +/- 0.3 x 10(-3) min-1 were determined. The inactivation followed the pH optimum (6.5-7.0) for the enzyme activity, suggesting direct involvement of the same active site residue(s). The reaction mode of the inhibitor may be analogous to that of the inactivation of Pseudomonas aeruginosa elastase [Nishino, N. and Powers, J. (1980) J. Biol. Chem., 255, 3482] in which the catalytic glutamate carboxyl was alkylated by the inhibitor after its binding to enzyme through the hydroxamic Zn2+ ligand. All carboxyl groups in the inactivated collagenase were modified with 0.1 M ethyl dimethylaminopropyl carbodiimide/0.5 M glycinamide in 4 M guanidine at pH 5. The inactivator-affected carboxyl group was then regenerated with 1 M imidazole at pH 8.9, 37 degrees C for 12 h and the protein was radiolabeled with 3H-glycine methyl ester and carbodiimide to incorporate 0.9 residue glycine per mol enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号