共查询到20条相似文献,搜索用时 0 毫秒
1.
Hisashi Ito Masafumi Watanabe 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):279-286
Cathepsins B and L belong to the papain superfamily of cysteine proteases and play important roles in various physiological and pathological processes. In the course of studies on their inhibitors, we examined the inhibitory effects of the peptide aldehyde benzyloxycarbonyl-leucyl-leucyl-leucinal (ZLLLal) and its analogues. As a result, rat liver cathepsins B and L were shown to be strongly inhibited by them. The concentration required for 50% inhibition (IC50) by ZLLLal was 88 nM for cathepsin B and 163 nM for cathepsin L. Moreover, various analogues of ZLLLal, including 2-furancarbonyl-, nicotinyl-, isonicotinyl- and 4-morpholinylsuccinyl-LLLals, and some acetyl-Pro (AcP)-containing analogues, AcPLLLal and AcPPLLLal, were shown to inhibit both enzymes more strongly than ZLLLal. Among them, isonicotinyl-LLLal was most inhibitory against both cathepsins B (IC50, 12 nM) and L (IC50, 20 nM). Several of these inhibitors were indicated to be somewhat more soluble in aqueous media than ZLLLal. 相似文献
2.
The selective cleavage of peptide bonds by cathepsin L from rat liver was examined with a hexapeptide, luteinizing hormone releasing hormone, neurotensin and oxidized insulin A chain as model substrates. The specificity of cathepsin L was compared with that of cathepsin B. Cathepsin L cleaved peptide bonds that have a hydrophobic amino acid, such as Phe, Leu, Val, and Trp or Tyr, in position P2. A polar amino acid, such as Tyr, Ser, Gly, Glu, Asp, Gln, or Asn, in position P1. enhanced the susceptibility of the peptide bond to cathepsin L, though the importance of the amino acid residue in position P1' was not as great as that of the amino acid in position P2 for the action of cathepsin L. These results suggest that, in contrast to cathepsin B, cathepsin L shows very clear specificity. 相似文献
3.
Conversion of proinsulin into insulin by cathepsins B and L from rat liver lysosomes 总被引:3,自引:0,他引:3
Conversion of proinsulin and intermediate forms of proinsulin into insulin were studied with rat liver cell fractions and purified lysosomal proteinases by using the technique of polyacrylamide disc-electrophoresis. Both substrates were degraded very rapidly by homogenates and crude lysosomal fractions to split products not detectable on disc-electropherograms. Neither breakdown nor conversion were detected with the cytosol and the microsomal fraction. With partially purified lysosomal fractions (mol. wt. approx. 25 000) or with highly purified cathepsin L or cathepsin B (B1) proinsulin was converted into products migrating like the intermediate forms and insulin, and the intermediates were converted into products migrating like insulin and deoctapeptide-insulin in disc-electropherograms. The mechanism of conversion seems to be different for both enzymes. The results force us to conclude that lysosomal cathepsins, especially cathepsins L and B might be involved in the process of conversion of proinsulin into insulin and perhaps also of other precursors into biologically active proteins in vivo. 相似文献
4.
5.
Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues 总被引:15,自引:0,他引:15
Resveratrol (3,5,4'-trans-trihydroxystilbene) is a natural phytoalexin present in grapes and red wine, which possesses a variety of biological activities including antioxidative activity. To find more efficient antioxidants by structural modification, resveratrol analogues, that is, 3,4-dihydroxy-trans-stilbene (3,4-DHS), 4,4'-dihydroxy-trans-stilbene (4,4'-DHS), 4-hydroxy-trans-stilbene (4-HS) and 3,5-dihydroxy-trans-stilbene (3,5-DHS), were synthesized and their antioxidant activity studied for the free radical-induced peroxidation of rat liver microsomes in vitro. The peroxidation was initiated by either a water-soluble azo compound 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) or Fe(2+)/ascorbate, and monitored by oxygen uptake and formation of thiobarbituric acid reactive substances (TBARS). It was found that all of these trans-stilbene derivatives are effective antioxidants against both AAPH- and iron-induced peroxidation of rat liver microsomes with an activity sequence of 3,4-DHS>4,4'-DHS>resveratrol>4-HS>3,5-DHS. The remarkably higher antioxidant activity of 3,4-DHS is discussed. 相似文献
6.
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region. 相似文献
7.
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region. 相似文献
8.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (3), 1,7-bis-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (5), 1,7-bis(3,4-dimethoxyphenyl)-1,6-heptadiene-3,5-dione (6), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (7), and evaluated their antioxidative activity. The in vitro oxidative damage to both lipids and proteins in rat liver mitochondria was used as a model to study the free radical-induced oxidative damage of biological lipids as well as proteins and the protective effects of these curcumin analogues. It was found that these compounds, except 6 and 7, could effectively inhibit the free radical induced lipid peroxidation and protein oxidative damage of rat liver mitochondria by H-atom abstraction from the phenolic groups. Compound 2 which bear ortho-diphenoxyl functionality exhibited remarkably higher antioxidative activity for lipids and proteins than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity. 相似文献
9.
K Ii K Hizawa E Kominami Y Bando N Katunuma 《The journal of histochemistry and cytochemistry》1985,33(11):1173-1175
Different localizations of cathepsin B, H, and L in normal rat liver were revealed immunohistochemically with anticathepsin Fab'-horseradish peroxidase conjugates. Staining of cathepsin B was strong in the periportal sinusoids, possibly in Kupffer cells; and weaker in panlobular hepatocytes. Staining of cathepsin H was strong in panlobular hepatocytes, especially in the periphery of the cytoplasm, possibly representing the peribiliary dense bodies; and weaker in periportal sinusoidal cells, possibly Kupffer cells. Staining of cathepsin L was strongest in centrilobular hepatocytes and weaker in periportal sinusoidal cells, possibly Kupffer cells. These findings, revealed for the first time in the present study, show that the histologic and intracellular localizations of the three cathepsins are different, suggesting that they have different roles in degradation of exogenous and endogenous proteins. 相似文献
10.
J Farrés K L Guan H Weiner 《Biochemical and biophysical research communications》1988,150(3):1083-1087
The cDNA coding for the signal peptide of rat liver mitochondrial aldehyde dehydrogenase was sequenced. The deduced amino acid sequence of the signal peptide was MLRAALSTARRGPRLSRLL. From this sequence an amphiphilic helix which had a high hydrophobic moment could be constructed. A comparison to the published cDNA sequence of human mitochondrial aldehyde dehydrogenase revealed great sequence identity and allowed us to make some predictions regarding the primary structure of the human signal peptide. 相似文献
11.
Cathepsins B and H from rat liver contain one asparagine-linked sugar chain in each molecule. The sugar chains were liberated from the polypeptide portions by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Paper electrophoresis of the radioactive oligosaccharide fractions revealed that they were mixtures of neutral oligosaccharides only. After fractionation by gel filtration the structure of each oligosaccharide was studied by sequential exoglycosidase digestion in combination with methylation analysis. The sugar chain of cathepsin H was a high mannose type oligosaccharide which varied in size from 5 to 9 mannose residues; on the other hand the major oligosaccharide of cathepsin B was a tetrasaccharide whose structure was Manalpha 1----6Manbeta 1----4GlcNAcbeta 1----4GlcNAc. 相似文献
12.
Three classes of carbonyl-containing substrate analogues and partial substrate analogues have been tested for their ability to inhibit angiotensin converting enzyme. (4-Oxobutanoyl)-L-proline is proposed to occupy the S1' and S2' subsites on the enzyme, thus locating its aldehyde carbonyl group at the position of the active site zinc atom. This aldehyde is 70% hydrated in aqueous solution and could mimic a tetrahedral intermediate occurring during enzyme-catalyzed substrate hydrolysis, but its Ki is only 760 microM. Carbobenzoxy-L-isoleucyl-L-histidyl-L-prolyl-L-phenylalaninal is proposed to occupy the S1 through S4 subsites on the other side of the zinc atom. Its weak Ki of 60 microM is nearly equipotent to its parent peptide terminating in phenylalanine. However, ketoace, (5RS)-(5-benzamido-4-oxo-6-phenylhexanoyl)-L-proline [Almquist, R.G., Chao, W.R., Ellis, M.E., & Johnson, H.L. (1980) J. Med. Chem. 23, 1392-1398], one of the third class of inhibitors proposed to occupy subsites S1 through S2' on both sides of the zinc atom, has a Ki of 0.0006 microM under our assay conditions, orders of magnitude more potent than its parent peptide. The carbonyl carbon of ketoace is less than 3% hydrated in aqueous solution as determined by carbon-13 nuclear magnetic resonance spectroscopy. If the hydrate is the species bound to converting enzyme, its Ki must be less than 18 pM. Ketoace is a slow-binding inhibitor of converting enzyme, but its overall Ki is dependent on its concentration and therefore prevents calculation of kinetic constants for slow binding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Enzyme-substrate interactions in the hydrolysis of peptides by cathepsins B and H from rat liver. 总被引:1,自引:0,他引:1 下载免费PDF全文
Free Ca2+ in the cytosol ([Ca2+]i) of individual rat ventricle cells injected with aequorin was measured under anoxia. In glucose-free medium myocytes spontaneously shortened after about 60 min, although [Ca2+]i was still at or near resting levels. However, within minutes a net inward movement of Ca2+ across the sarcolemma developed and [Ca2+]i began to rise. Provided oxygen was readmitted before [Ca2+]i exceeded 2-3 microM, cells were able to restore [Ca2+]i to resting levels through caffeine-sensitive sequestration of Ca2+ in the sarcoplasmic reticulum. We suggest that Ca2+-independent shortening of anoxic cardiomyocytes reflects onset of rigor which triggers loss of [Ca2+]i homoeostasis. 相似文献
14.
T. Goto T. Tsukuba T. Kiyoshima Y. Nishimura K. Kato K. Yamamoto T. Tanaka 《Histochemistry and cell biology》1993,99(5):411-414
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix. 相似文献
15.
16.
The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. 总被引:5,自引:0,他引:5 下载免费PDF全文
D Br?mme A Steinert S Friebe S Fittkau B Wiederanders H Kirschke 《The Biochemical journal》1989,264(2):475-481
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range. 相似文献
17.
Localization of cathepsins B,D, and L in the rat osteoclast by immuno-light and -electron microscopy
T. Goto T. Tanaka T. Kiyoshima R. Moroi T. Tsukuba K. Yamamoto Y. Nishimura M. Himeno 《Histochemistry and cell biology》1994,101(1):33-40
The localization of cathepsins B, D, and L was studied in rat osteoclasts by immuno-light and-electron microscopy using the avidin-biotin-peroxidase complex (ABC) method. In cryosections prepared for light microscopy, immunoreactivity for cathepsin D was found in numerous vesicles and vacuoles but was not detected along the resorption lacunae of osteoclasts. However, immunoreactivity for cathepsins B and L occurred strongly along the lacunae, and only weak intracellular immunoreactivity was observed in the vesicles and peripheral part of the vacuoles near the ruffled border. In control sections that were not incubated with the antibody, no cathepsins were found in the osteoclasts or along the resorption lacunae of osteoclasts. At the electron microscopic level, strong intracellular reactivity of cathepsin D was found in numerous vacuoles and vesicles, while extracellular cathepsin D was only slightly detected at the base of the ruffled border but was not found in the eroded bone matrix. Most osteoclasts showed strong extracellular deposition of cathepsins B and L on the collagen fibrils and bone matrix under the ruffled border. The extracellular deposition was stronger for cathepsin L than for cathepsin B. Furthermore cathepsins B and L immunolabled some pits and part of the ampullar extracellular spaces, appearing as vacuoles in the sections. Conversely, the intracellular reactivity for cathepsins B and L was weak: cathepsin-containing vesicles and vacuoles as primary and secondary lysosomes occurred only sparsely. These findings suggest that cathepsins B and L, unlike cathepsin D, are rapidly released into the extracellular matrix and participate in the degradation of organic bone matrix containing collagen fibrils near the tip of the ruffled border. Cathepsin L may be more effective in the degradation of bone matrix than cathepsin B. 相似文献
18.
M. Furuhashi A. Nakahara H. Fukutomi E. Kominami D. Grube Y. Uchiyama 《Histochemistry and cell biology》1991,95(3):231-239
Summary Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins. 相似文献
19.
Cathepsins B, H, and L are representative cysteine proteinases in lysosomes of a large variety of cells. Previous immunochemical studies indicated the presence of these enzymes also in the gastrointestinal wall. Using specific antisera, the cellular and subcellular distribution of cathepsins B, H, and L in rat gastric (oxyntic and pyloric part) and duodenal mucosa was investigated by light and electron microscopical immunocytochemistry. The subtypes of cathepsins were distributed differently in the cellular constituents of the epithelia: Cathepsin B was localized to lysosomes of all cells except goblet cells. Cathepsin H was found predominantly in gastric parietal cells (lysosomes) and in secretion granules of pyloric gastrin and duodenal cholecystokinin cells. Cathepsin L immunoreactivities were weak and restricted to a minority of cells (gastric mucous cells, enterocytes). Interstitial cells of the lamina propria immunoreactive for cathepsins H and L were identified as macrophages. The present findings suggest a dual function of cathepsins in the gastro-duodenal mucosa. They (1) cleave enzymatically proteins and peptides ingested in lysosomes, and (2) they may be involved in the processing of biologically active peptides (enteric hormones) from their precursor proteins. 相似文献
20.
Reaction of radicals in the presence of O2, and singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, and that this can result in inactivation of thiol-dependent enzymes. The major route for the cellular removal of damaged proteins is via catabolism mediated by proteosomal and lysosomal pathways; cysteine proteases (cathepsins) play a key role in the latter system. We hypothesized that inactivation of cysteine proteases by hydroperoxide-containing oxidised proteins may contribute to the accumulation of modified proteins within cells. We show here that thiol-dependent cathepsins, either isolated or in cell lysates, are rapidly and efficiently inactivated by amino acid, peptide, and protein hydroperoxides in a time- and concentration-dependent manner; this occurs with similar efficacy to equimolar H2O2. Inactivation involves reaction of the hydroperoxide with Cys residues as evidenced by thiol loss and formation of sulfenic acid intermediates. Structurally related, non-thiol-dependent cathepsins are less readily inactivated by these hydroperoxides. This inhibition, by oxidized proteins, of the system designed to remove modified proteins, may contribute to the accumulation of damaged proteins in cells subject to oxidative stress. 相似文献