首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We attempt to determine whether the decrease in Na+ reabsorption and the increase in K+ secretion in sweat of cystic fibrosis patients (CF) were associated with changes in glandular anaerobic metabolism evaluated by forehead sweat lactate excretion rate. 6 CF and 11 normal (C) children, 5 months to 14 years old, were exposed to external thermal load (45 degrees C). The data showed that: 1) Na+, K+ and Cl- concentrations in CF are constant at any flow rate (Qsw); 2) In both groups the excretion rates of Na+, K+ and Cl- increased linearly with Qsw but the slopes in CF were significantly higher than in C (p less than 0.001); 3) Lactate excretion rate increased with Qsw as in CF and C with the same slope. We suggest that an increase in energy expenditure of Na+ - K+ exchange and an active secretion of K+ by the duct could explain the normal energy metabolism that we observed in CF sweat glands.  相似文献   

3.
4.
Altered intestinal chloride transport in cystic fibrosis   总被引:18,自引:0,他引:18  
Sodium ion and chloride transport was studied in vitro in small intestinal and colonic tissue from patients with cystic fibrosis (CF) and from non-CF control subjects matched as to age and sex. Normal histological appearance and substantial response to mucosal glucose (5 mM, ileum) or mucosal amiloride (10(-5) M, colon) indicated normal tissue viability in both control and CF tissues. Electroneutral NaCl absorption was demonstrated in the small intestine of control subjects and CF patients. Small intestinal and colonic tissues of control subjects responded to four secretagogues (theophylline, 5 mM; prostaglandin E2, 10(-6) M; calcium ionophore (A23187), 10(-5) M; bethanechol, 5 x 10(-5) M), with electrogenic chloride secretion. The tissues of CF patients, however, did not respond to any of the test secretagogues. These studies demonstrate that an abnormality in chloride transport is present in the small intestinal and colonic epithelia of CF patients. Unlike airway epithelia, which secrete chloride in response to Ca ionophore, the intestinal epithelia of CF patients do not respond to either cAMP- or Ca-mediated secretagogues. This abnormality in intestinal electrolyte transport may play a role in the pathogenesis of meconium impactions in CF patients.  相似文献   

5.
Cystic fibrosis (CF) is the most common genetic autosomal recessive disease in caucasian north-american and european populations. The CF gene codes for a transmembrane glycoprotein called CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a chloride channel which regulates the luminal secretion of chloride and the active ion and water transport in the airway epithelial cells. Mutations of the CF gene lead to a dysregulation of chloride and sodium channel associated to airway mucus dehydration, neutrophil-dominated airway inflammation and chronic infection responsible for the morbidity and mortality of CF patients. Although a high number of studies has been devoted to the CFTR pleiotropic functions, the chronology of the physiopathological events leading to the airway inflammation linked to mutations of the CF gene is still an open question. The issue of whether airway inflammation takes place before infection or is a consequence of infection during CF pathogenesis is still controversial. It has been recently reported that in broncho-alveolar lavages collected in CF infants, there is an increased level of interleukin IL-8 and abnormal low level of IL-10. The decreased IL-10 production has been confirmed in peripheral blood monocytes as well as in airway cell lines. Under basal conditions, the increased expression of the pro-inflammatory IL-8 cytokine has also been recently observed in the airway liquid secreted by CF na?ve humanized airway xenografts and in the supernatant culture of CF human airway epithelial cells. These results suggest that CFTR dysfunction may result in a constitutive pro-inflammatory vs anti-inflammatory imbalance in CF disease. Recent data from the literature suggest that the failure of chloride transport, the maturation defect and mistraffricking of mutated CFTR, lead to its accumulation in the endoplasmic reticulum and activation of NF-kappa B, responsible for the imbalance in the CF airway cell cytokine production.  相似文献   

6.
7.
8.
9.
Shen B  Li X  Wang F  Yao X  Yang D 《PloS one》2012,7(4):e34694
Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.  相似文献   

10.
11.
We have previously described a high conductance calcium-activated 'maxi K' channel in primary cultures of human eccrine sweat gland cells both from normal subjects and those with cystic fibrosis. In further studies we have now identified a potassium-selective channel of much lower conductance which shows outward-rectification and which is present in sweat glands isolated from cystic fibrosis subjects. In experiments with inside-out patches using symmetrical pipette and bath solutions containing 140 mM K+ the channel showed an outward slope conductance (at +50 mV) of approximately 26 pS and an inward conductance (at -50 mV) of approximately 11 pS. When K+ in the bath was replaced by Na+ the reversal potential shifts to reveal a permeability ratio PK/PNa approximately 40 Unlike the maxi-K+ channel, the outward-rectifying channel does not show sensitivity to Ca2+. Channels were found in cells cultured from the glands of four out of five cystic fibrosis subjects. In cells cultured from 30 subjects who did not have cystic fibrosis, an outward-rectifying potassium channel was seen in only one out of approximately 3000 patches.  相似文献   

12.
13.
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a number of different classes of organic anions which are able to enter and block the channel pore from its cytoplasmic end. Here I show, using patch clamp recording from CFTR-transfected baby hamster kidney cell lines, that the cis-unsaturated fatty acid arachidonic acid also inhibits CFTR Cl- currents when applied to the cytoplasmic face of excised membrane patches. This inhibition was of a relatively high affinity compared with other known CFTR inhibitors, with an apparent Kd of 6.5 +/- 0.9 microM. However, in contrast with known CFTR pore blockers, inhibition by arachidonic acid was only very weakly voltage dependent, and was insensitive to the extracellular Cl- concentration. Arachidonic acid-mediated inhibition of CFTR Cl- currents was not abrogated by inhibitors of lipoxygenases, cyclooxygenases or cytochrome P450, suggesting that arachidonic acid itself, rather than some metabolite, directly affects CFTR. Similar inhibition of CFTR Cl- currents was seen with other fatty acids, with the rank order of potency linoleic > or = arachidonic > or = oleic > elaidic > or = palmitic > or = myristic. These results identify fatty acids as novel high affinity modulators of the CFTR Cl- channel.  相似文献   

14.
15.
Cystic fibrosis (CF) is the most common inherited disorder of childhood. The diagnosis of CF has traditionally been based on clinical features with confirmatory evidence by sweat electrolyte analysis. Since 1989 it has been possible to also use gene mutation analysis to aid the diagnosis. Cloning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has advanced our understanding of CF, in particular the molecular basis of an expanded CF phenotype. However, because there are over 1000 mutations and 200 polymorphisms, many without recognised effects on CFTR, the molecular diagnosis can be troublesome. This has necessitated measurement of CFTR function with renewed interest in the sweat test. This review provides an overview of the clinical features of CF, the diagnosis and complex genetics. We provide a detailed discussion of the structure and function of CFTR and the classification of CFTR mutations. Sweat electrolyte analysis is discussed, from the physiology of sweating to the rigours of a properly performed sweat test and its interpretation. With this information it is possible to understand the relevance of the sweat test in the genomic era.  相似文献   

16.
To understand potential mechanisms explaining interindividual variability observed in human sweat sodium concentration ([Na(+)]), we investigated the relationship among [Na(+)] of thermoregulatory sweat, plasma membrane expression of Na(+) and Cl(-) transport proteins in biopsied human eccrine sweat ducts, and basal levels of vasopressin (AVP) and aldosterone. Lower ductal luminal membrane expression of the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) was observed in immunofluorescent staining of sweat glands from healthy young adults identified as exceptionally "salty sweaters" (SS) (n = 6, P < 0.05) and from patients with cystic fibrosis (CF) (n = 6, P < 0.005) compared with ducts from healthy young adults with "typical" sweat [Na(+)] (control, n = 6). Genetic testing of healthy subjects did not reveal any heterozygotes ("carriers") for any of the 39 most common disease-causing CFTR mutations in the United States. SS had higher baseline plasma [AVP] compared with control (P = 0.029). Immunostaining to investigate a potential relationship between higher plasma [AVP] (and sweat [Na(+)]) and ductal membrane aquaporin-5 revealed for all groups a relatively sparse and location-dependent ductal expression of the water channel with localization primarily to the secretory coil. Availability of CFTR for NaCl transport across the ductal membrane appears related to the significant physiological variability observed in sweat salt concentration in apparently healthy humans. At present, a heritable link between healthy salty sweaters and the most prevalent disease-causing CFTR mutations cannot be established.  相似文献   

17.
18.
Cystic fibrosis (CF), an inherited disease characterized by defective epithelial Cl- transport, damages lungs via chronic inflammation and oxidative stress. Glutathione, a major antioxidant in the epithelial lung lining fluid, is decreased in the apical fluid of CF airway epithelia due to reduced glutathione efflux (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). The present study examined the question of whether restoration of chloride transport would also restore glutathione secretion. We found that a Cl- channel-forming peptide (N-K4-M2GlyR) and a K+ channel activator (chlorzoxazone) increased Cl- secretion, measured as bumetanide-sensitive short-circuit current, and glutathione efflux, measured by high-performance liquid chromatography, in a human CF airway epithelial cell line (CFT1). Addition of the peptide alone increased glutathione secretion (181 +/- 8% of the control value), whereas chlorzoxazone alone did not significantly affect glutathione efflux; however, chlorzoxazone potentiated the effect of the peptide on glutathione release (359 +/- 16% of the control value). These studies demonstrate that glutathione efflux is associated with apical chloride secretion, not with the CF transmembrane conductance regulator per se, and the defect of glutathione efflux in CF can be overcome pharmacologically.  相似文献   

19.
Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.  相似文献   

20.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号