首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mediated biosensors consisting of an oxidase and peroxidase (POx) have attracted increasing attention because of their wider applicability. This work presents a novel approach to fabricate nanobiocomposite bienzymatic biosensor based on functionalized multiwalled carbon nanotubes (MWNTs) with the aim of evaluating their ability as sensing elements in amperometric transducers. Electrochemical behavior of the bienzymatic nanobiocomposite biosensor is investigated by Faradaic impedance spectroscopy and cyclic voltammetry. The results indicate that glucose oxidase (GOD) and horseradish peroxidase (HRP) are strongly adsorbed on the surface of the thionin (TH) functionalized MWNTs and demonstrate a facile electron transfer between immobilized GOD/HRP and the electrode via the functionalized MWNTs in a Nafion film. The functionalized carbon nanotubes act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centres of enzymes through TH. Linear ranges for these electrodes are from 10 nM to 10 mM for glucose and 17 nM to 56 mM for hydrogen peroxide with the detection limit of 3 and 6 nM, respectively. A remarkable feature of the bienzyme electrode is the possibility to determine glucose and hydrogen peroxide at a very low applied potential where the noise level and interferences from other electroactive compounds are minimal. Performance of the biosensor is evaluated with respect to response time, detection limit, selectivity, temperature and pH as well as operating and storage stability.  相似文献   

2.
Zou Y  Sun LX  Xu F 《Biosensors & bioelectronics》2007,22(11):2669-2674
In this work, a novel route for fabrication polyaniline (PANI)-Prussian Blue (PB) hybrid composites is proposed by the spontaneous redox reaction in the FeCl(3)-K(3)[Fe(CN)(6)] and the aniline solution. With the introduction of multi-walled carbon nanotubes (MWNTs), the PANI-PB/MWNTs system shows synergy between the PANI-PB and MWNTs which amplified the H(2)O(2) sensitivity greatly. A linear range from 8 x1 0(-8) to 1 x 10(-5)M and a high sensitivity 508.1 8 microA microM cm(2) for H(2)O(2) detection are obtained. The composites also show good stability in neutral solution. A glucose biosensor was further constructed by immobilizing glucose oxidase (GOD) with Nafion and glutaraldehyde on the electrode surface. The performance factors influencing the resulted biosensor were studied in detail. The biosensor exhibits excellent response performance to glucose with the linear range from 1 to 11 mM and a detection limit of 0.01 mM. Furthermore, the biosensor shows rapid response, high sensitivity, good reproducibility, long-term stability and freedom of interference from other co-existing electroactive species.  相似文献   

3.
Gold nanotubular electrode ensembles were prepared by using electroless deposition of the metal within the pores of polycarbonate track-etched membranes. Mono-enzyme (GOx) and monolayer/bilayer bienzyme (GOx/HRP) bioelectrodes were prepared by immobilizing the enzymes onto gold nanotubes surfaces modified with mercaptoethylamine. Batch amperometric responses to glucose for the different bioelectrodes were determined and compared. The response of the two geometries (monolayer and bilayer) of the bienzyme electrodes was shown to vary with regard to sensitivity at detection potentials above 0V. On the contrary, at detection potentials below 0V, no noticeable influence of the configuration of the bienzyme on the response intensity was observed. The mono-enzyme (650 microAmM-1 in benzoquinone (BQ) at -0.8 V versus Ag/AgCl) and the two bienzyme bioelectrodes (+/-400 microAmM-1 in hydroquinone (H2Q) at -0.2V versus Ag/AgCl) display remarkable sensitivities compared to a classical GOx-modified gold macroelectrode (13 microAmM-1 in BQ at -0.8 V versus Ag/AgCl). A remarkable feature of the bienzyme electrodes is the possibility to detect glucose at very low applied potentials where the noise level and interferences from other electro-oxidizable compounds are minimal. Another important characteristic of the monolayer bienzyme electrode is the possible existence of a direct electronic communication between HRP and the transducer surface.  相似文献   

4.
Qu F  Yang M  Jiang J  Shen G  Yu R 《Analytical biochemistry》2005,344(1):108-114
Conducting polymer film was prepared by electrochemical polymerization of aniline. Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. By using the layer-by-layer method, homogeneous and stable MWNTs and polyaniline (PANI) multilayer films were alternately assembled on glassy carbon (GC) electrodes. Conducting polymer of PANI had three main functions: (i) excellent antiinterference ability, (ii) protection ability in favor of increasing the amount of the MWNTs immobilized on GC electrodes, and (iii) superior transducing ability. The protection effect of PANI film and the electrostatic interaction between positively charged PANI and negatively charged MWNTs both attributed to immobilizing abundant MWNTs stably, thereby enhancing the catalytic activity. The layer-by-layer assembled MWNTs and PANI-modified GC electrodes offered a significant decrease in the overvoltage for the H2O2 and were shown to be excellent amperometric sensors for H2O2 from +0.2V over a wide range of concentrations. As an application example, by linking choline oxidase (CHOD), an amplified biosensor toward choline was prepared. The choline biosensor exhibited a linear response range of 1x10(-6) to 2x10(-3) M with a correlation coefficient of 0.997, and the response time and detection limit (S/N=3) were determined to be 3 s and 0.3 microM, respectively. The antiinterference biosensor displays a rapid response and an expanded linear response range as well as excellent reproducibility and stability.  相似文献   

5.
Novel nickel and copper oxide nanoparticle modified polyaniline (PANI) nanofibers (NiO/CuO/PANI) were fabricated and used as a non-enzymatic sensor for detecting glucose. PANI nanofibers were prepared through electrodeposition, whereas nickel and copper oxide nanoparticles were deposited on PANI nanofibers by electrodeposition and electrochemical oxidation in situ. The morphology and structure of NiO/CuO/PANI nanocomposites were characterized by field emission scanning electron microscopy (FE–SEM), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FT–IR). The as-prepared NiO/CuO/PANI electrode was employed for non-enzymatic glucose detection in alkaline electrolyte and showed better electrocatalytic activity compared with the PANI, CuO/PANI, and NiO/PANI electrodes. Consequently, an amperometric electrode of glucose was achieved under 0.6 V versus Ag/AgCl with a wide linear range from 20 to 2500 μM (R2 = 0.9978) and a low detection limit of 2.0 μM (signal/noise [S/N] = 3). This electrode can effectively analyze glucose concentration in human serum samples, avoiding interference, and is a promising non-enzymatic glucose sensor due to its low overpotential, high sensitivity, good selectivity and stability, fast response, and low cost.  相似文献   

6.
A novel bienzyme-channeling sensor was constructed by entrapping glucose oxidase (GOD) and horseradish peroxidase (HRP) in the mesopores of well-ordered hexagonal mesoporous silica structures (SBA-15). The SBA-15 mesoporous materials accelerated the electron transfer between the entrapped HRP and electrode. Both HRP and GOD retained their catalytic activities in the bienzyme-entrapped SBA-15 film. In presence of glucose the enzymatic reaction of GOD-glucose-dissolved oxygen system generated hydrogen peroxide in the bienzyme-entrapped mesopores, which was immediately reduced at -0.40 V by an electrocatalytic reaction with the HRP entrapped in the same mesopore to lead to a sensitive and fast amperometric response. Thus the bienzyme channeling could be used for the detection of glucose with excellent performance without the addition of any mediator. Optimization of the experimental parameters was performed with regard to pH, operating potential and temperature. The detection limit was down to 2.7 x 10(-7)M with a very wide linear range from 3.0 x 10(-6) to 3.4 x 10(-2)M. The constructed bienzyme channeling provided a strategy for amperometric detection of oxidase substrates by co-entrapping the corresponding oxidase and HRP in the mesoporous materials.  相似文献   

7.
This study demonstrates a polyelectrolyte-free method to fabricate controllable and stable all-MWNTs films via a covalent layer-by-layer (LBL) deposition. Aminated MWNTs and carboxylated MWNTs were prepared by surface functionalization, allowing the incorporation of MWNTs into highly tunable thin films through the formation of covalent amide bonds. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the formation of covalent linkages between MWNTs layers. Scanning electron microscopy (SEM) and ultraviolet-visible spectroscopy (UV-vis) were used to characterize the assembly process. Electrochemical studies indicated that the all-MWNTs film possessed a remarkable electrocatalytic activity toward dihydronicotinamide adenine dinucleotide (NADH) at relatively low potentials, without the need for redox mediators. The film thickness and the amount of assembled MWNTs were readily adjusted by simply changing the number of cycles in the LBL assembly process, which also effectively tuned the electrocatalytic activity of the film toward NADH. The film constructed with four bilayers showed a high sensitivity of 223.8μAmM(-1)cm(-2) and a detection limit of 1.5μM, with a fast response of less than 3s. Furthermore, the all-MWNTs film also showed good selectivity and excellent stability for the determination of NADH.  相似文献   

8.
The capping of electron relay units in mesoporous carbon nanoparticles (MPC NPs) by crosslinking of different enzymes on MPC NPs matrices leads to integrated electrically contacted bienzyme electrodes acting as dual biosensors or as functional bienzyme anodes and cathodes for biofuel cells. The capping of ferrocene methanol and methylene blue in MPC NPs by the crosslinking of glucose oxidase (GOx) and horseradish peroxidase (HRP) yields a functional sensing electrode for both glucose and H2O2, which also acts as a bienzyme cascaded system for the indirect detection of glucose. A MPC NP matrix, loaded with ferrocene methanol and capped by GOx/lactate oxidase (LOx), is implemented for the oxidation and detection of both glucose and lactate. Similarly, MPC NPs, loaded with 2,2′‐azino‐bis(3‐ethylbenzo­thiazoline‐6‐sulphonic acid), are capped with bilirubin oxidase (BOD) and catalase (Cat), to yield a bienzyme O2 reduction cathode. A biofuel cell that uses the bienzyme GOx/LOx anode and the BOD/Cat cathode, glucose and/or lactate as fuels, and O2 and/or H2O2 as oxidizers is assembled, revealing a power efficiency of ≈90 μW cm?2 in the presence of the two fuels. The study demonstrates that multienzyme MPC NP electrodes may improve the performance of biofuel cells by oxidizing mixtures of fuels in biomass.  相似文献   

9.
The performance of a new glucose biosensor based on the combination of biocatalytic activity of glucose oxidase (GOx) with the electrocatalytic properties of CNTs and neutral red (NR) for the determination of glucose is described. This sensor is comprised of a multiwalled carbon nanotubes (MWNTs) conduit functionalized with NR and Nafion (Nf) as a binder and glucose oxidase as a biocatalyst. Neutral red was covalently immobilized on carboxylic acid groups of the CNTs via carbodiimide reaction. The functionalized MWNTs were characterized by microscopic, spectroscopic and thermal methods. The MWNT-NR-GOx-Nf nanobiocomposite was prepared by mixing the GOx solution with NR functionalized CNTs followed by mixing homogeneously with Nafion. The performance of the MWNT-NR-GOx-Nf nanobiocomposite modified electrode was examined by electrochemical impedance spectroscopy and cyclic voltammetry. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon glucose with NR functionalized CNTs leads to the selective detection of glucose. The excellent electrocatalytic activity and the influence of nanobiocomposite film result in good characteristics such as low potential detection of glucose with a large determination range from 1 x 10(-8) to 1 x 10(-3)M with a detection limit of 3 x 10(-9)M glucose, a short response time (with 4s), good stability and anti-interferent ability. The improved electrocatalytic activity and stability made the MWNT-NR-GOx-Nf nanobiocomposite biosensor system a potential platform to immobilize different enzymes for other bioelectrochemical applications.  相似文献   

10.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

11.
Based on a glucose oxidase sensor for determination of glucose several glucoseoxidase bioenzyme electrodes have been developed. Enzymes producing glucose by hydrolysis of saccharides (glucamylase, invertase, cellulase) as well as glucose consuming systems (hexo-kinase, glucose dehydrogenase) have been coupled to glucose oxidase. The function of the bienzyme systems was demonstrated by concentration measurements (blood glucose, maltose, ATP, NAD+, starch) and enzyme activity measurements (alpha-amylase, ATPase, lactate dehydrogenase).  相似文献   

12.
The design of an electrochemical glucose sensing device formed by the electrodeposition of multifunctional Au nanoparticles is reported here as a novel concept for an enhanced generic sensing platform. Initially gold nanoparticles (Au) were alternatively coated with a layer of positively charged redox polymer (ORP) and a negatively charged glucose oxidase (GOX) layer alternatively using layer-by-layer methodology to form multifunctional Au/ORP/GOX/ORP particles. The modification and stability of the Au nanoparticles was monitored by using UV-vis spectroscopy and zeta-potential measurements. The modified Au nanoparticles were electrophoretically deposited onto an electrode to produce an electrochemical glucose sensing device. A considerable influence of electrophoretic deposition time and potential was found on the sensing platform response. Preliminary responses to glucose addition showed an enhanced performance by applying an electrophoretic deposition potential of +1.2V vs. Ag/AgCl for 30min. The observed response in the case of microelectrode geometry was in the range of mAcm(2). This work also shows that the presence of a second outer ORP layer on the functionalised Au nanoparticles improved the response.  相似文献   

13.
A kind of nanocomposite with good dispersion in water was prepared through covalent adsorption of ferrocenecarboxaldehyde on multiwalled carbon nanotubes (MWNTs) for electrical communication between glucose oxidase (GOD) and electrode. The ferrocene-modified multiwalled carbon nanotube nanocomposites (MWNTs-Fc) could be conveniently cast on electrode surfaces. With the aid of chitosan, GOD was then immobilized on the nanostructure film to form a reagentless amperometric sensor for glucose determination. FTIR spectra and cyclic voltammetry were used to characterize the nanocomposites. The presence of both ferrocene as mediator of electron transfer and MWNTs as conductor enhanced greatly the enzymatic response to the oxidation of glucose. The novel biosensor exhibited a fast response toward glucose with a detection limit of 3.0 × 10−6 mol/L and the linear range extended up to 3.8 × 10−3 mol/L.  相似文献   

14.
The kinetic behaviour of a heterogeneous branched bienzyme system of beta-D-glucose oxidase and hexokinase on glucose has been studied. In this sequence, hexokinase is inhibited by its product glucose 6-phosphate and also by D-gluconic acid produced from the parallel enzymic reaction of glucose oxidase. Effect of glucose concentrations on the product's distribution in branched pathway of the bienzyme system is dependent on the kinetic properties of hexokinase and glucose oxidase. Product inhibitions, which are also pH dependent, have a strong regulatory role on the reaction flux.  相似文献   

15.
One-step construction of Pt nanoparticles-chitosan composite film (PtNPs-CS) was firstly proposed as a novel immobilization matrix for the enzymes to fabricate glucose biosensor. This novel interface embedded in situ PtNPs in CS hydrogel was developed by one-step electrochemical deposition in solution containing CS and chloroplatinic acid (H(2)PtCl(6)). Several techniques, including scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry were employed to characterize the assembly process and performance of the biosensor. Under the optimized experimental conditions, the resulting biosensor exhibited excellent linear behavior in the concentration range from 1.2 μM to 4.0 mM for the quantitative analysis of glucose with a limit of detection of 0.4 μM at a signal-to-noise ratio of 3. The apparent Michaelis-Menten constant (K(M)(app)) was evaluated to be 2.4 mM, showing good affinity. The proposed biosensor offered good amperometric responses to glucose due to the nanostructured sensing film provided plenty of active sites for the immobilization of glucose oxidase (GOD).  相似文献   

16.
A novel amperometric biosensor, based on electrodeposition of platinum nanoparticles onto multi-walled carbon nanotube (MWNTs) and immobilizing enzyme with chitosan-SiO(2) sol-gel, is presented in this article. MWNTs were cast on the glass carbon (GC) substrate directly. An extra Nafion coating was used to eliminate common interferents such as acetaminophen and ascorbic acids. The morphologies and electrochemical performance of the modified electrodes have been investigated by scanning electron microscopy (SEM) and amperometric methods, respectively. The synergistic action of Pt and MWNTs and the biocompatibility of chitosan-SiO(2) sol-gel made the biosensor have excellent electrocatalytic activity and high stability. The resulting biosensor exhibits good response performance to glucose with a wide linear range from 1 microM to 23 mM and a low detection limit 1 microM. The biosensor also shows a short response time (within 5s), and a high sensitivity (58.9 microAm M(-1)cm(-2)). In addition, effects of pH value, applied potential, rotating rate, electrode construction and electroactive interferents on the amperometric response of the sensor were investigated and discussed in detail.  相似文献   

17.
Amperometric biosensors for glucose, ethanol, and biogenic amines (putrescine) were constructed using oxidase/peroxidase bienzyme systems. The H(2)O(2) produced by the oxidase in reaction with its substrate is converted into a measurable signal via a novel peroxidase purified from sweet potato peels. All developed biosensors are based on redox hydrogels formed of oxidases (glucose oxidase, alcohol oxidase, or amine oxidase) and the newly purified sweet potato peroxidase (SPP) cross-linked to a redox polymer. The developed electrodes were characterized (sensitivity, stability, and performances in organic medium) and compared with similarly built ones using the 'classical' horseradish peroxidase (HRP). The SPP-based electrodes displayed higher sensitivity and better detection limit for putrescine than those using HRP and were also shown to retain their activity in organic phase much better than the HPR based ones. The importance of attractive or repulsive electrostatic interactions between the peroxidases and oxidases (determined by their isoelectric points) were found to play an important role in the sensitivity of the obtained sensors.  相似文献   

18.
Gold nanoparticles (AuNPs) with an average diameter of 5nm were assembled on the surface of silver chloride@polyaniline (PANI) core-shell nanocomposites (AgCl@PANI). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) suggested that AuNPs were incorporated on AgCl@PANI through coordination bonds instead of electrostatic interaction. The resulting AuNPs-AgCl@PANI hybrid material exhibited good electroactivity at a neutral pH environment. An amperometric glucose biosensor was developed by adsorption of glucose oxidase (GOx) on an AuNPs-AgCl@PANI modified glassy carbon (GC) electrode. AuNPs-AgCl@PANI could provide a biocompatible surface for high enzyme loading. Due to size effect, the AuNPs in the hybrid material could act as a good catalyst for both oxidation and reduction of H(2)O(2). As the measurement of glucose was based on the electrochemical detection of H(2)O(2) generated by enzyme-catalyzed-oxidation of glucose, the biosensor exhibited a super highly sensitive response to the analyte with a detection limit of 4 pM. Moreover, the biosensor showed good reproducibility and operation stability. The effects of some factors, such as temperature and pH value, were also studied.  相似文献   

19.
The structure of bacterial cellulose is affected by the bacterial strain used, culture media and cultivation conditions. In this study, acid-treated multi-walled carbon nanotubes (MWNTs) were added into a static culture medium and their effect on bacterial cellulose structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), CP/MAS (13)C NMR and X-ray diffractometry. The bacterial cellulose ribbons and the MWNTs interwound and formed a three-dimensional network architecture. Band-like assemblies with sharp bends and rigidity were also produced in the presence of MWNTs. The intermolecular hydrogen bonds in bacterial cellulose produced in the presence of MWNTs were weakened. The crystal structure, cellulose I(alpha) content, crystallinity index (CrI) and crystallite size all changed. The results may suggest that the acid-treated MWNTs containing hydroxyl groups interact with the sub-elementary bacterial cellulose fibrils, subsequently interfering with the aggregation and crystallization.  相似文献   

20.
Xian Y  Hu Y  Liu F  Xian Y  Wang H  Jin L 《Biosensors & bioelectronics》2006,21(10):1996-2000
In this paper, we report a novel glucose biosensor based on composite of Au nanoparticles (NPs)-conductive polyaniline (PANI) nanofibers. Immobilized with glucose oxidase (GOx) and Nafion on the surface of nanocomposite, a sensitive and selective biosensor for glucose was successfully developed by electrochemical oxidation of H2O2. The glucose biosensor shows a linear calibration curve over the range from 1.0x10(-6) to 8.0x10(-4) mol/L, with a slope and detection limit (S/N=3) of 2.3 mA/M and 5.0x10(-7) M, respectively. In addition, the glucose biosensor system indicates excellent reproducibility (less than 5% R.S.D.) and good operational stability (over 2 weeks).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号