首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To begin to characterize the pulmonary arterial transport function we rapidly injected a bolus containing a radiopaque dye and a fluorescence dye into the right atrium of anesthetized dogs. The concentrations of the dye indicators were measured in the main pulmonary artery (fluoroscopically) and in a subpleural pulmonary arteriole (by fluorescence microscopy). The resulting concentration vs. time curves were subjected to numerical deconvolution and moment analysis to determine how the bolus was dispersed as it traveled through the arteriole stream tube from the main pulmonary artery to the arteriole. The mean transit time and standard deviation of the transport function from the main pulmonary artery to the arterioles studied averaged 1.94 and 1.23 s, respectively, and the relative dispersion (ratio of standard deviation to mean transit time) was approximately 64%. This relative dispersion is at least as large as those reported for the whole dog lung, indicating that relative to their respective mean transit times the dispersion upstream from the arterioles is comparable to that taking place in capillaries and/or veins. The standard deviations of the transport functions were proportional to their mean transit times. Thus the relative dispersion from the main pulmonary artery to the various arterioles studied was fairly consistent. However, there were variations in mean transit time even between closely adjacent arterioles, suggesting that variations in mean transit times between arteriole stream tubes also contribute to the dispersion in the pulmonary arterial tree.  相似文献   

2.
To determine the effects of alveolar hypoxia on pulmonary microvascular volume, X-ray microfocal angiographic images of isolated perfused dog lung lobes were obtained during passage of a bolus of radiopaque contrast medium during both normoxic (alveolar gas, 15% O(2), 6% CO(2), and 79% N(2)) and hypoxic (3% O(2), 6% CO(2), and 91% N(2)) conditions. Regions of interest (ROIs) over the lobar artery and vein at low magnification and a feeding artery ( approximately 500 microm diameter) and the nearby microvasculature (vessels smaller than approximately 50 microm) at high magnification were identified, and X-ray absorbance vs. time curves were acquired under both conditions from the same ROIs. The total pulmonary vascular volume was calculated from the flow and the mean transit time for the contrast medium passage from the lobar artery to lobar vein. The fractional changes in microvascular volume were determined from the areas under the high-magnification X-ray absorbance curves. Hypoxia decreased lobar volume by 13 +/- 3% (SE) and regional microvascular volume by 26 +/- 4% (SE). Given the morphometry of the lung vasculature, these results suggest that capillary volume was decreased by hypoxia.  相似文献   

3.
In isolated canine lung lobes perfused with a pulsatile pump, arterial occlusions were performed and the postocclusion arterial pressure profiles were analyzed to estimate the pulmonary capillary pressure. A solenoid valve interposed between the pump and the lobar artery was used to perform arterial occlusions at several instants equally distributed within a pressure cycle. Double occlusions were also accomplished by simultaneously activating the solenoid valve and clamping the venous outflow of the lung lobe. To analyze an arterial occlusion pressure profile, we computed the best monoexponential fit of the pressure decay over a short period of time after the occlusion maneuvers. Two estimates of the capillary pressure were derived from this analysis: 1) the extrapolation of the exponential fit to the instant of occlusion, and 2) the point at which the recorded pressure decay curve merges with the exponential fit. The pressures thus determined were compared with the double occlusion pressure that provided an independent estimate of the pulmonary capillary pressure. Our results show that, under a wide range of conditions, the estimates of the capillary pressure obtained from the arterial occlusion data are nearly equal to the double occlusion pressures. Additionally, we estimated the capillary pressure variations within a pressure cycle by examining the occlusion pressures sampled at different instants of the cycle. The pulsatility of the pulmonary microvascular pressure varied with the pump frequency as well as the state of arterial and venous vasoaction. These variations are consistent with the representation of the lung vasculature as a low-pass filter.  相似文献   

4.
The effects of PGA1 and PGA2 were studied in the canine pulmonary vascular bed. Infusion of PGA1 into the lobar artery decreased lobar arterial and venous pressure but did not change left atrial pressure. In contrast, PGA2 infusion increased lobar arterial and venous pressure and the effects of this substance were similar in experiments in which the lung was perfused with dextran or with blood. These data indicate that under conditions of controlled blood flow PGA1 decreases pulmonary vascular resistance by dilating intrapulmonary veins and to a lesser extent vessels upstream to the small veins, presumably small arteries. The present data show that PGA2 increases pulmonary vascular resistance by constricting intrapulmonary veins and upstream vessels. The predominant effect of PGA2 was on upstream vessels and the pressor effect was not due to interaction with formed elements in the blood or platelet aggregation.  相似文献   

5.
The adult lung is perfused by both the systemic bronchial artery and the entire venous return flowing through the pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that responds to a need for enhanced lung perfusion and shows robust neovascularization. Pulmonary vascular ischemia induced by pulmonary artery obstruction has been shown to result in rapid systemic arterial angiogenesis in man as well as in several animal models. Although the histologic assessment of the time course of bronchial artery proliferation in rats was carefully described by Weibel 1, mechanisms responsible for this organized growth of new vessels are not clear. We provide surgical details of inducing left pulmonary artery ischemia in the rat that leads to bronchial neovascularization. Quantification of the extent of angiogenesis presents an additional challenge due to the presence of the two vascular beds within the lung. Methods to determine functional angiogenesis based on labeled microsphere injections are provided.  相似文献   

6.
The low-viscosity bolus method was used to determine the longitudinal distributions of vascular resistance and intravascular pressure with respect to cumulative vascular volume from the lobar artery to the lobar vein in isolated dog lung lobes near functional residual capacity under zone 3 conditions. We found that the resistance distribution had two modes, a larger one upstream and a smaller one downstream from a local minimum. Over the range of vascular pressures studied the total vascular resistance decreased and the vascular volume increased with increasing vascular pressure. However, the shape of the normalized resistance distribution was independent of vascular pressure. Comparisons of the resistance distributions with the distributions of arterial, capillary, and venous volumes suggest that the modes represent regions of relatively high resistance proximal and distal to the capillary bed. These results are consistent with the concept that within the lobar vascular bed the highest resistance per unit blood volume is in the smallest arteries and veins, as suggested by morphometric data from other sources.  相似文献   

7.
When pulmonary blood flow is elevated, hypoxemia can occur in the fastest-moving erythrocytes if their transit times through the capillaries fall below the minimum time for complete oxygenation. This desaturation is more likely to occur if the distribution of capillary transit times about the mean is large. Increasing cardiac output is known to decrease mean pulmonary capillary transit time, but the effect on the distribution of transit times has not been reported. We measured the mean and variance of transit times in single pulmonary capillary networks in the dependent lung of anesthetized dogs by in vivo videofluorescence microscopy of a fluorescein dye bolus passing from an arteriole to a venule. When cardiac output increased from 2.9 to 9.9 l/min, mean capillary transit time decreased from 2.0 to 0.8 s. Because transit time variance decreased proportionately (relative dispersion remained constant), increasing cardiac output did not alter the heterogeneity of local capillary transit times in the lower lung where the capillary bed was nearly fully recruited.  相似文献   

8.
Local control of pulmonary resistance and lung compliance was studied in the in situ left lower lobe of the canine lung. Recirculation of blood through the lobe while the Pco2 of the ventilatory gas was varied resulted in an increase in resistance and a decrease in compliance only when the pulmonary venous pH was greater than 7.42. Alternating sodium bicarbonate and lactic acid infusion while alveolar Pco2 was maintained below 5 mmHg demonstrated the dependence of the hypocapnic response on the acid-base status of the blood perfusing the respiratory airways. The increase in resistance and decrease in compliance observed at a pulmonary venous pH of 7.64 was comparable to that observed after lobar pulmonary artery occlusion. Varying degrees of hypoxia did not significantly affect bronchomotor tone, nor was the bronchoconstriction following lobar pulmonary artery occlusion affected by the hypoxia. Vagal stimulation superimposed on a stepwise increase in pulmonary venous pH from 7.32 to 7.62 resulted in an increase in resistance which paralleled the increase in resistance when pulmonary venous pH alone was increased. Compliance was not significantly affected by vagal stimulation at any level of pulmonary venous pH.  相似文献   

9.
Summary The indirect immunofluorescence technique was used to determine the distribution of vasoactive intestinal polypeptide-immunoreactive and somatostatin-immunoreactive axons in the pulmonary vasculature of the aquatic file snake Acrochordus granulatus. A dense distribution of vasoactive intestinal polypeptide-immunoreactive axons was found on the common pulmonary artery, the anterior and posterior pulmonary arteries, and the smaller arteries branching to the lung. The density of these axons appeared greater in arterial preparations taken from more distal regions of the lung. The densest distribution of vasoactive intestinal polypeptide-immunoreactive axons was observed on the larger pulmonary veins in all regions of the lung. These axons were observed on the larger veins within the lung parenchyma but not on the smaller veins. Axons and cell bodies were observed in the vagal nerve trunks which run parallel to the pulmonary arteries and veins. In contrast, no somatostatin-immunoreactive axons were observed in any region of the pulmonary vasculature. It is proposed that the perivascular plexus of vasoactive intestinal polypeptide-immunoreactive axons may represent part or all of the vagal postganglionic innervation of the pulmonary vasculature.  相似文献   

10.
The effects of four F series prostaglandins on the pulmonary vascular bed were compared under conditions of controlled pulmonary blood flow in the intact spontaneously breathing dog. PGF1alpha and PGF2alpha increased lobar arterial pressure whereas PGF1beta and PGF2beta had little if any effect when infused into the lobar artery. The increase in lobar arterial pressure in response to PGF1alpha and PGF2alpha was associated with a significant increase in lobar venous pressure but no change in left atrial pressure. These data indicate that PGF1alpha and PGF2alpha increase pulmonary vascular resistance by constricting lobar veins and vessels upstream to small veins, presumed to be small arteries. It is concluded that in the pulmonary vascular bed the configuration of the hydroxyl group at carbon 9 is an important determinant of pressor activity.  相似文献   

11.
To determine regional pulmonary microvascular mean transit times (MTTs), we used electrocardiogram-gated X-ray computed tomographic imaging to follow bolus radiopaque contrast material through the lungs in anesthetized animals (7 dogs and 1 pig, prone and supine). By deconvolution/reconvolution of regional time-attenuation curves obtained from parenchyma and large lobar arteries, we estimated the microvascular residue function and reconstituted the regional microvascular time-attenuation curves and, thus, regional microvascular MTTs. The mean microvascular MTTs in the supine and prone postures were 3.94 +/- 1.0 and 3.40 +/- 0.84 (mean +/- SD), respectively. The dependent-nondependent vertical gradient of MTT was greater in the supine [slope = 0.25 +/- 0.10 (SD), P < 0.001 by t-test] than in the prone (-0.03 +/- 0.06 in 6 of 8 animals; 2 outliers had positive slopes) posture. In both postures, there was a trend toward faster transit times in the dorsal-basal lung region in six of the eight animals, suggesting gravity-independent higher vascular conductance dorsocaudally. We conclude that deconvolution methods, in association with electrocardiogram-gated high-speed X-ray computed tomography, can provide insights into regional heterogeneity of pulmonary microvascular MTT in vivo.  相似文献   

12.
We examined the acute changes in anastomotic bronchial blood flow (Qbr) serially for the 1st h after pulmonary arterial obstruction and subsequent reperfusion. We isolated and perfused the pulmonary circulation of the otherwise intact left lower lobe (LLL) with autologous blood in the widely opened chest of anesthetized dogs. Qbr was measured from the amount of blood overflowing from the closed pulmonary vascular circuit and the changes in the lobe weight. The right lung and the test lobe (LLL) were ventilated independently. The LLL, which was in zone 2 (mean pulmonary arterial pressure = 14.8 cm H2O, pulmonary venous pressure = 0, alveolar pressure = 5-15 cmH2O), was weighed continuously. The systemic blood pressure, gases, and acid-base status were kept constant. In control dogs without pulmonary arterial obstruction, the Qbr did not change for 2 h. Five minutes after pulmonary arterial obstruction, there was already a marked increase in Qbr, which then continued to increase for 1 h. After reperfusion, Qbr decreased. The increase in Qbr was greater after complete lobar than sublobar pulmonary arterial obstruction. It was unaltered when the downstream pulmonary venous pressure was increased to match the preobstruction pulmonary microvascular pressure. Thus, in zone 2, reduction in downstream pressure was not responsible for the increase in Qbr; neither was the decrease in alveolar PCO2, since ventilating the lobe with 10% CO2 instead of air did not change the Qbr. These findings suggest that there is an acute increase in Qbr after pulmonary arterial obstruction and that is not due to downstream pressure or local PCO2 changes.  相似文献   

13.
Dopamine increases blood flow to a hypoxic left lower lobe in dogs. To elucidate possible mechanisms, left lower lobe collapse was induced in anesthetized dogs, and lobar (QLLL) and total (QT) pulmonary blood flow was measured by electromagnetic flow probes. Dopamine infusion increased mean pulmonary arterial pressure (Ppa), QT, and QLLL. However, the increase in QLLL was double that produced by a similar increase in Ppa without increase in QT (inflation of a Swan-Ganz balloon in right pulmonary artery) or by a similar increase in QT with smaller increase in Ppa (opening of arteriovenous fistulas). QLLL/QT was not changed by opening arteriovenous fistulas, but was increased by Swan-Ganz balloon inflation, and by infusion of dopamine. It is concluded that the increase in QLLL/QT produced by dopamine was due to a decrease in hypoxic vasoconstriction in the lobe secondary to an increase in mixed venous PO2 and to vasoconstriction in the oxygenated lung.  相似文献   

14.
Thirty-three paired indicator/nutrient dilution curves across the mammary glands of four cows were obtained after rapid injection of para-aminohippuric acid (PAH) plus glucose into the external iliac artery. For the measurement of extracellular volume and kinetics of nutrient uptake from indicator dilution curves, several models of solute dispersion and disappearance have been proposed. The Crone-Renkin models of exchange in a single capillary assume negligible washout of solutes from the extracellular space and do not describe entire dilution curves. The Goresky models include a distribution of capillary transit times to generate whole system outflow profiles but require two indicators to parametize extracellular behavior. A compartmental capillary, convolution integration model is proposed that uses one indicator to account for the extracellular behavior of the nutrient after a paired indicator/nutrient injection. With the use of an iterative approach to least squares, unique solutions for nonexchanging vessel transit time t(mu) and its variance sigma were obtained from all 33 PAH curves. The average of heterogeneous vascular transit times was approximated as 2sigma = 8.5 s. The remainder of indicator dispersion was considered to be due to washout from a well-mixed compartment representing extracellular space that had an estimated volume of 5.5 liters or 24% of mammary gland weight. More than 99% of the variation in the time course of venous PAH concentration after rapid injection into the arterial supply of the mammary glands was explained in an unbiased manner by partitioning the organ into a heterogeneous nonexchanging vessel subsystem and a well-mixed compartmental capillary subsystem.  相似文献   

15.
The Laks catheter is a triple-lumen balloon catheter used to distend the canine main pulmonary artery while recording right ventricular pressure and the arterial pressure distal to the balloon. A rise in arterial pressure reported to occur during distension has been attributed to vasoconstriction rather than passive obstruction by the balloon. We tested this in six anesthetized dogs by inflating the Laks catheter-balloon while recording pressure distal to the balloon from the Laks catheter as well as from additional catheters in right and left pulmonary arteries placed retrogradely through lobar branches following thoracotomy. We found that balloon inflation increased pressures in the arterial port of the Laks catheter and in the left pulmonary artery catheter but reduced it in the right pulmonary artery. Tightening a snare around the right pulmonary artery had the same effects on pressures. Similar results were obtained while cardiac output was controlled by left ventricular bypass perfusion in four dogs. We conclude that the Laks catheter-balloon obstructs flow to the right lung and that the arterial pressure rise recorded in it during balloon inflation cannot be distinguished from that caused by occlusion of the right pulmonary artery.  相似文献   

16.
When a bolus containing a nonpermeating indicator and an indicator which permeates the endothelial cell membrane by a saturable process is injected into the blood flowing into the lung, the instantaneous extraction ratio curves measured in the pulmonary venous outflow are asymmetric with respect to the nonpermeating indicator curve. If the bolus contains a sufficient quantity of the permeating indicator that the capillary concentration begins to saturate the transfort mechanism, the extraction ratio curves are concave upward as well. The purpose of this study was to determine whether a mathematical model which represents endothelial extraction by Michaelis-Menten kinetics could explain the time variation in the instantaneous extraction ratio curves. The venous concentration curves were assumed to be the result of the endothelial transfort and distributed capillary input and transit times. In addition, we evaluated a method for estimating the kinetic parameters (Km and Vmax) of the saturable transfort process in such an organ. The results of simulations indicate that the important features of the data can be reproduced by the model, and that useful estimates of the kinetic parameters will be obtained from linear multiple regression analysis of the venous concentration curves if the standard deviation of the capillary input time distribution is not less than that of the capillary transit time distribution.  相似文献   

17.
To assess the in vivo effects of the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP) on the pulmonary vascular bed, the hemodynamic responses to both CGRP and SP were examined in the in situ-perfused lung lobe of open-chest anesthetized pigs. Peptides were infused into the lobar artery under conditions of elevated pulmonary vascular tone by prostaglandin F2 alpha (PGF2 alpha, 20 micrograms/min). Pulmonary airway lobar dynamic compliance (Cdyn) and airway resistance (Re) were computed from simultaneously measured airway pressure and airflow entering the lobe through a Carlens endobronchial divider. PGF2 alpha infusion slightly reduced Cdyn (-20%) and increased Re (+11%) while lobar arterial pressure rose from 14 +/- 1 to 31 +/- 2 mmHg (n = 12). In these conditions, lobar artery infusion of SP (0.5-50 pmol/min) or CGRP (15-5,000 pmol/min) produced a dose-dependent decrease in the pressor response to PGF2 alpha, reaching -54 +/- 3 and -64 +/- 7%, respectively, without alterations in lung mechanics. On a molar basis, SP was more effective than CGRP; its vasodilatory effect was more rapid and of shorter duration. Higher CGRP infusion rates were not studied because of marked systemic hypotension. SP infused at 150, 500, and 1,000 pmol/min significantly reduced Cdyn by 12 +/- 2, 24 +/- 4, and 62 +/- 7%, respectively, but also induced a rise in lobar arterial pressure and a fall in systemic arterial pressure. The results show that both SP and CGRP are potent pulmonary vasodilators. In contrast to CGRP, which did not affect lung mechanics, high infusion rates of SP decreased Cdyn and increased Re.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.  相似文献   

19.
Summary The innervation of the pulmonary vasculature of the semi-arboreal rat snake,Elaphe obsoleta, was examined with glyoxylic acid-induced catecholamine histochemistry, peptide immunohistochemistry, and in vitro perfusion of the pulmonary vasculature. An adrenergic innervation was present on the pulmonary artery, the smaller pulmonary arteries, the veins draining the lung, and the main pulmonary vein. Vasoactive intestinal polypeptide-like immunoreactive axons were observed on the pulmonary artery and vein, small arteries, and occasionally small veins within the lung parenchyma. A dense plexus of substance P-like immunoreactive (SP-LI) axons was observed on the distal extrinsic pulmonary artery. SP-LI axons were found on the more distal arteries within the lung parenchyma, but not on the veins. The distribution of calcitonin gene-related peptide- and SP-LI axons was similar suggesting that the axons are sensory nerves. In the perfused pulmonary vasculature, vagal stimulation caused a predominant vasoconstriction which was abolished by atropine indicating it was cholinergic in nature. A post-stimulus vasodilatation was abolished by bretylium and propranolol indicating it was adrenergic in nature. The responses to nerve stimulation were located in both the extrinsic and intrinsic pulmonary vasculature. No evidence for non-adrenergic, noncholinergic transmission to the vascular smooth muscle was found. The extensive, functional innervation of the main pulmonary artery, as well as the more distal vasculature within the lung, may reflect adaptation to cardiovascular problems imposed by an elongated body and arboreal habits.Abbreviations VIP vasoactive intestinal polypeptide - VIP-LI vasoactive intestinal polypeptide-like immunoreactive - SP substance P - SP-LI substance P-like immunoreactive - SOM somatostatin - SOM-LI somatostatin-like immunoreactive - CGRP calcitonin gene-related peptide - CGRP-LI calcitonin gene-related peptide-like immunoreactive - NANC non-adrenergic noncholinergic - PI perfusion inflow  相似文献   

20.
This study addresses the hypothesis that decreases in lung perfusion rate independently worsen gas exchange efficiency in an isolated left lower lobe in zone 2 conditions. In seven anesthetized dogs, the left lower lobe was isolated, leaving the bronchus and bronchial vasculature intact. Blood was taken from the femoral arteries and reinfused at a controlled rate into the pulmonary artery of the left lower lobe. The flow rate was varied between 100 and 400 ml/min. The multiple inert gas elimination technique was used to quantitate the matching of ventilation to perfusion. Reduction in lobe blood flow resulted in a significant increase in perfusion-related indexes of alveolar ventilation-perfusion heterogeneity, such as the log standard deviation of the perfusion distribution, the retention component of the arterial-alveolar difference area, and the retention dispersion index. The increased heterogeneity suggests a worsening of the intraregional matching between the ventilation and the perfusion when perfusion is less than normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号