共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasil'ev VI Tikhonova TV Gvozdev RI Tukhvatullin IA Popov VO 《Biochemistry. Biokhimii?a》2006,71(12):1329-1335
The hydroxylase component of membrane-bound (particulate) methane monooxygenase (pMMO) from Methylococcus capsulatus strain M was isolated and purified to homogeneity. The pMMO molecule comprises three subunits of molecular masses 47, 26, and 23 kD and contains three copper atoms and one iron atom. In solution the protein exists as a stable oligomer of 660 kD with possible subunit composition (alpha beta gamma)6. Mass spectroscopy shows high homology of the purified protein with methane monooxygenase from Methylococcus capsulatus strain Bath. Pilot screening of crystallization conditions has been carried out. 相似文献
2.
L. V. Tumanova I. A. Tukhvatullin D. Sh. Burbaev R. I. Gvozdev K. K. Andersson 《Russian Journal of Bioorganic Chemistry》2008,34(2):177-185
The particulate membrane-bound methane hydroxylase (pMMOH) was isolated from methane-oxidizing cells of Methylococcus capsulatus (strain M). At SDS PAGE, pMMOH displays three bands: at 47 (α), 27 (β), and 25 kDa (γ). The ESR spectrum of pMMOH incubated with hydrogen peroxide (final concentration 20 mM) at 4°C exhibited, along with the copper signal of type II with g = 2.05, signals of cytochrome with g = 3.0 and of high-spin ferriheme with g = 6.00 After incubation at ?30°C, additional signals with g 8.5 and 13.5 were observed. These signals, which have not been recorded previously in pMMOH preparations, are due to an intermediate of the pMMOH active site, which arises in the reaction of hydrogen peroxide with pMMOH at ?30°C. It was established that this intermediate is a high-spin dimer [Fe(III)-Fe(IV)] with S = 9/2 and different degree of rhombic distortion of structure (it is responsible for both signals). Presumably, the signal with g = 8.5 also arises from the same dimer [Fe(III)-Fe(IV)], but with S = 7/2. The presence of the intermediate [Fe(III)-Fe(IV)] in pMMOH preparations suggests that the original state of the pMMOH active site is the dimer [Fe(III)-Fe(III)] which is located in the β-subunit and cannot be detected by ESR. 相似文献
3.
4.
The membrane-bound (particulate) form of methane monooxygenase from Methylococcus capsulatus (Bath) has been solubilised using the non-ionic detergent dodecyl-beta-D-maltoside. A wide variety of detergents were tested and found to solubilise membrane proteins but did not yield methane monooxygenase in a form that could be subsequently activated. After solubilisation with dodecyl-beta-D-maltoside, enzyme activity was recovered using either egg or soya-bean lipids. Attempts to further purify the solubilized methane monooxygenaser protein into its component polypeptides were unsuccessful and resulted in complete loss of enzyme activity. The major polypeptides present in the solubilised enzyme had molecular masses of 49 kDa, 23 kDa and 22 kDa which were similar to those seen in crude extracts [Prior, S. D. & Dalton H. (1985) J. Gen. Microbiol. 131, 155-163]. Studies on substrate and inhibitor specificities indicated that the membrane-associated and solubilised forms of methane monooxygenase were quite similar to each other but differed substantially from the well-characterised soluble methane monooxygenase found in cells grown in a low copper regime and synthesised independently of the particulate methane monooxygenase. 相似文献
5.
Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). 总被引:2,自引:0,他引:2
下载免费PDF全文

An active preparation of the membrane-associated methane monooxygenase (pMMO) from Methylococcus capsulatus Bath was isolated by ion-exchange and hydrophobic interaction chromatography using dodecyl beta-D-maltoside as the detergent. The active preparation consisted of three major polypeptides with molecular masses of 47,000, 27,000, and 25,000 Da. Two of the three polypeptides (those with molecular masses of 47,000 and 27,000 Da) were identified as the polypeptides induced when cells expressing the soluble MMO are switched to culture medium in which the pMMO is expressed. The 27,000-Da polypeptide was identified as the acetylene-binding protein. The active enzyme complex contained 2.5 iron atoms and 14.5 copper atoms per 99,000 Da. The electron paramagnetic resonance spectrum of the enzyme showed evidence for a type 2 copper center (g perpendicular = 2.057, g parallel = 2.24, and magnitude of A parallel = 172 G), a weak high-spin iron signal (g = 6.0), and a broad low-field (g = 12.5) signal. Treatment of the pMMO with nitric oxide produced the ferrous-nitric oxide derivative observed in the membrane fraction of cells expressing the pMMO. When duroquinol was used as a reductant, the specific activity of the purified enzyme was 11.1 nmol of propylene oxidized.min-1.mg of protein-1, which accounted for approximately 30% of the cell-free propylene oxidation activity. The activity was stimulated by ferric and cupric metal ions in addition to the cytochrome b-specific inhibitors myxothiazol and 2-heptyl-4-hydroxyquinoline-N-oxide. 相似文献
6.
Methane is oxidised to methanol in methanotrophic bacteria by the enzyme methane monooxygenase (MMO). Methylococcus capsulatus (Bath) produces a soluble MMO which oxidises a range of aliphatic and aromatic compounds with potential for commercial exploitation. This multicomponent enzyme has been extensively characterised and biochemical data have been used to identify a 12-kb fragment of Methylococcus DNA carrying the structural genes mmoY and mmoZ, coding for the beta- and gamma-subunits of MMO component A, the methane-binding protein. We now report the complete nucleotide (nt) sequence of mmoX, the gene encoding the alpha-subunit of component A which is found to be 5' to mmoY and mmoZ. We also report the complete nt sequence of mmoC which encodes component C, the iron-sulfur flavoprotein of MMO, the N terminus of which is significantly homologous with spinach ferredoxin. The mmo structural genes are clustered within a 7-kb region and are closely linked to two small open reading frames of unknown function. 相似文献
7.
Methane monooxygenase is a multicomponent enzyme system that catalyzes the conversion of methane to methanol in methanotrophic bacteria. Catalysis occurs at non-heme dinuclear iron centers contained in the hydroxylase component of the system, a dimer of composition alpha 2 beta 2 gamma 2. The hydroxylase protein from Methylococcus capsulatus (Bath) has been crystallized from aqueous solutions containing polyethylene glycol, lithium sulfate, and ammonium acetate. The crystals are orthorhombic, space group P2(1)2(1)2(1), with one dimer of relative molecular mass M(r) = 252,000 in the asymmetric unit. The unit cell dimensions are a = 62.6 A, b = 110.1 A, c = 333.5 A. The crystals diffract uniformly beyond 2.5 A resolution. Crystals of the related hydroxylase from Methylosinus trichosporium OB3b have also been obtained. 相似文献
8.
Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath 总被引:1,自引:0,他引:1
Soluble extracts of Methylococcus capsulatus (Bath) that readily oxidise methane to methanol will also oxidise ammonia to nitrite via hydroxylamine. The ammonia oxidising activity requires O2, NADH and is readily inhibited by methane and specific inhibitors of methane mono-oxygenase activity. Hydroxylamine is oxidised to nitrite via an enzyme system that uses phenazine methosulphate (PMS) as an electron acceptor. The estimated Kmvalue for the ammonia hydroxylase activity was 87 mM but the kinetics of the oxidation were complex and may involve negative cooperativity.Abbreviations PMS Phenazine methosulphate - NADH nicotinamide adenine dinucleotide, reduced form - Km Michaelis constant - NO2- nitrite - NH2OH hydroxylamine 相似文献
9.
Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath.
下载免费PDF全文

D C Wilton 《The Biochemical journal》1976,153(2):495-497
Soluble extracts of Methylococcus capsulatus (Bath), obtained by centrifugation of crude extracts at 160000g for 1h, catalyse the NAD(P)H- and O2-dependent disappearance of bromomethane, and also the formation of methanol from methane. Soluble methane mono-oxygenase is not inhibited by chelating agents or by most electron-transport inhibitors, and is a multicomponent enzyme. 相似文献
10.
Amy C. Rosenzweig Hans Brandstetter Douglas A. Whittington Pr Nordlund Stephen J. Lippard Christin A. Frederick 《Proteins》1997,29(2):141-152
The crystal structure of the nonheme iron-containing hydroxylase component of methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) has been solved in two crystal forms, one of which was refined to 1.7 Å resolution. The enzyme is composed of two copies each of three subunits (α2β2γ2), and all three subunits are almost completely α-helical, with the exception of two β hairpin structures in the α subunit. The active site of each α subunit contains one dinuclear iron center, housed in a four-helix bundle. The two iron atoms are octahedrally coordinated by 2 histidine and 4 glutamic acid residues as well as by a bridging hydroxide ion, a terminal water molecule, and at 4°C, a bridging acetate ion, which is replaced at −160°C with a bridging water molecule. Comparison of the results for two crystal forms demonstrates overall conservation and relative orientation of the domain structures. The most prominent structural difference identified between the two crystal forms is in an altered side chain conformation for Leu 110 at the active site cavity. We suggest that this residue serves as one component of a hydrophobic gate controlling access of substrates to and products from the active site. The leucine gate may be responsible for the effect of the B protein component on the reactivity of the reduced hydroxylase with dioxygen. A potential reductase binding site has been assigned based on an analysis of crystal packing in the two forms and corroborated by inhibition studies with a synthetic peptide corresponding to the proposed docking position. Proteins 29:141–152, 1997. © 1997 Wiley-Liss, Inc. 相似文献
11.
12.
Helle N. Carlsen Lars Joergensen Hans Degn 《Applied microbiology and biotechnology》1991,35(1):124-127
Summary The kinetics of methane uptake by Methylococcus capsulatus (Bath) and its inhibition by ammonia were studied by stopped-flow membrane-inlet mass spectrometry. Measurements were done on suspensions of cells grown in high- and low-copper media. With both types of cells the kinetics of methane uptake are hyperbolic when oxygen is in excess. The apparent K
m and K
max for methane uptake are both higher in low-copper cells than in high-copper cells. Ammonia is a simple competitive inhibitor of methane uptake in high-copper cells when the oxygen concentration is above a few M. The findings agree with the assumption that ammonia is a week alternative substrate for particulate methane monooxygenase. In low-copper cells the effect of ammonia is complicated and cannot be explained in terms of current assumptions on the mechanism of soluble methane monooxygenase. Our data indicate that ammonia inhibition is likely to be a more serious problem in connection with cultivation in low-copper medium than in high-copper medium.
Offprint requests to: H. N. Carlsen 相似文献
13.
Soluble methane monooxygenase (sMMO) catalyzes the hydroxylation of methane by dioxygen to methanol, the first step in carbon assimilation by methanotrophs. This multicomponent system transfers electrons from NADH through a reductase component to the non-heme diiron center in the hydroxylase where O(2) is activated. The reductase component comprises three distinct domains, a [2Fe-2S] ferredoxin domain along with FAD- and NADH-binding domains. We report the solution structure of the reduced 27.6 kDa FAD- and NADH-binding domains (MMOR-FAD) of the reductase from Methylococcus capsulatus (Bath). The FAD-binding domain consists of a six-stranded antiparallel beta-barrel and one alpha-helix, with the first 10 N-terminal residues unstructured. In the interface between the two domains, the FAD cofactor is tightly bound in an unprecedented extended conformation. The NADH-binding domain consists of a five-stranded parallel beta-sheet with four alpha-helices packing closely around this sheet. MMOR-FAD is structurally homologous to other FAD-containing oxidoreductases, and we expect similar structures for the FAD/NADH-binding domains of reductases that occur in other multicomponent monooxygenases. 相似文献
14.
Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath) 总被引:13,自引:0,他引:13
Methylococcus capsulatus (Bath) possesses a multi-component methane monooxygenase which catalyzes in vivo the conversion of methane to methanol. Component A of this enzyme system, believed to be the oxygenase component, has been purified to near homogeneity (95%). The native protein has a molecular weight of approximately 210,000 and is comprised of three subunits of Mr = 54,000, 42,000, and 17,000, which appear to be present in stoichiometric amounts suggesting an alpha 2, beta 2, gamma 2 arrangement in the native protein. Purified preparations of the protein are virtually colorless and examination of the uv/visible absorption spectrum revealed a peak around 280-290 nm and thereafter a steady decrease in absorbance to longer wavelengths. The ESR spectrum of the oxidized protein gave a signal at g = 4.3, presumably due to rhombic iron, and a radical signal at g = 2.01. Upon reduction with dithionite, a signal at g = 1.934 appeared. Chemical analyses of our purified preparations revealed the presence of iron (2.3 mol/mol) and zinc (0.2-0.5 mol/mol): molybdenum, copper, nickel, heme, and acid-labile sulfur were all virtually absent. On ultra thin layer isoelectric focusing, purified component A was judged to have a pI between 5.0 and 5.1. Extracts prepared from a variety of other methanotrophs failed to show any cross-reaction to antibody raised against M. capsulatus component A. 相似文献
15.
Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a three-component enzyme system that catalyzes the conversion of methane to methanol. A reductase (MMOR), which contains [2Fe-2S] and FAD cofactors, facilitates electron transfer from NADH to the hydroxylase diiron active sites where dioxygen activation and substrate hydroxylation take place. By separately expressing the ferredoxin (MMORFd, MMOR residues 1-98) and FAD/NADH (MMOR-FAD, MMOR residues 99-348) domains of the reductase, nearly all biochemical properties of full-length MMOR are retained, except for interdomain electron transfer rates. To investigate the extent to which rapid electron transfer between domains might be restored and further to explore the modularity of MMOR, MMOR-Fd and MMOR-FAD were connected in a non-native fashion. Four different linker sequences were employed to create MMOR reversed-domain (MMOR-RD) constructs, MMOR(99-342)-linker-MMOR(2-98), with a domain connectivity observed in other homologous oxidoreductases. The optical, redox, and electron transfer properties of the four MMOR-RD proteins were characterized and compared with those of wild-type MMOR. The linker sequence plays a key role in controlling solvent accessibility to the FAD cofactor, as evidenced by perturbed flavin optical spectra, decreased FADox/FADsq redox potentials, and increased steady-state oxidase activities in three of the constructs. Stopped-flow optical spectroscopy revealed slow interdomain electron transfer (k < 0.04 s(-1) at 4 degrees C, compared with 90 s(-1) for wild-type MMOR) for all three MMOR-RD proteins with 7-residue linkers. A long (14-residue), flexible linker afforded much faster electron transfer between the FAD and [2Fe-2S] cofactors (k = 0.9 s(-1) at 4 degrees C). 相似文献
16.
The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath
下载免费PDF全文

Choi DW Kunz RC Boyd ES Semrau JD Antholine WE Han JI Zahn JA Boyd JM de la Mora AM DiSpirito AA 《Journal of bacteriology》2003,185(19):5755-5764
Improvements in purification of membrane-associated methane monooxygenase (pMMO) have resulted in preparations of pMMO with activities more representative of physiological rates: i.e., >130 nmol.min(-1).mg of protein(-1). Altered culture and assay conditions, optimization of the detergent/protein ratio, and simplification of the purification procedure were responsible for the higher-activity preparations. Changes in the culture conditions focused on the rate of copper addition. To document the physiological events that occur during copper addition, cultures were initiated in medium with cells expressing soluble methane monooxygenase (sMMO) and then monitored for morphological changes, copper acquisition, fatty acid concentration, and pMMO and sMMO expression as the amended copper concentration was increased from 0 (approximately 0.3 microM) to 95 microM. The results demonstrate that copper not only regulates the metabolic switch between the two methane monooxygenases but also regulates the level of expression of the pMMO and the development of internal membranes. With respect to stabilization of cell-free pMMO activity, the highest cell-free pMMO activity was observed when copper addition exceeded maximal pMMO expression. Optimization of detergent/protein ratios and simplification of the purification procedure also contributed to the higher activity levels in purified pMMO preparations. Finally, the addition of the type 2 NADH:quinone oxidoreductase complex (NADH dehydrogenase [NDH]) from M. capsulatus Bath, along with NADH and duroquinol, to enzyme assays increased the activity of purified preparations. The NDH and NADH were added to maintain a high duroquinol/duroquinone ratio. 相似文献
17.
Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). 总被引:2,自引:0,他引:2
The soluble methane monooxygenase system of Methylococcus capsulatus (Bath) includes three protein components: a 251-kDa non-heme dinuclear iron hydroxylase (MMOH), a 39-kDa iron-sulfur- and FAD-containing reductase (MMOR), and a 16-kDa regulatory protein (MMOB). The thermodynamic stability and kinetics of formation of complexes between oxidized MMOH and MMOB or MMOR were measured by isothermal titration calorimetry and stopped-flow fluorescence spectroscopy at temperatures ranging from 3.3 to 45 degrees C. The results, in conjunction with data from equilibrium analytical ultracentrifugation studies of MMOR and MMOB, indicate that free MMOR and MMOB exist as monomers in solution and bind MMOH with 2:1 stoichiometry. The role of component interactions in the catalytic mechanism of sMMO was investigated through simultaneous measurement of oxidase and hydroxylase activities as a function of varied protein component concentrations during steady-state turnover. The partitioning of oxidase and hydroxylase activities of sMMO is highly dependent on both the MMOR concentration and the nature of the organic substrate. In particular, NADH oxidation is significantly uncoupled from methane hydroxylation at MMOR concentrations exceeding 20% of the hydroxylase concentration but remains tightly coupled to propylene epoxidation at MMOR concentrations ranging up to the MMOH concentration. The steady-state kinetic data were fit to numerical simulations of models that include both the oxidase activities of free MMOR and of MMOH/MMOR complexes and the hydroxylase activity of MMOH/MMOB complexes. The data were well described by a model in which MMOR and MMOB bind noncompetitively at distinct interacting sites on the hydroxylase. MMOB manifests its regulatory effects by differentially accelerating intermolecular electron transfer from MMOR to MMOH containing bound substrate and product in a manner consistent with its activating and inhibitory effects on the hydroxylase. 相似文献
18.
Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath) 总被引:3,自引:0,他引:3
Aerobic stopped-flow experiments have confirmed that component C is the methane monooxygenase component responsible for interaction with NADH. Reduction of component C by NADH is not the rate-limiting step for component C in the methane monooxygenase reaction. Removal and reconstitution of the redox centres of component C suggest a correlation between the presence of the FAD and Fe2S2 redox centres and NADH: acceptor reductase activity and methane monooxygenase activity respectively, consistent with the order of electron flow: NADH----FAD----Fe2S2----component A. This order suggests that component C functions as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for transfer to component A via the one-electron-carrying Fe2S2 centre. Electron transfer has been demonstrated between the reductase component, component C and the oxygenase component, component A, of the methane monooxygenase complex from Methylococcus capsulatus (Bath) by three separate methods. This intermolecular electron transfer step is not rate-determining for the methane monooxygenase reaction. Intermolecular electron transfer was independent of component B, the third component of the methane monooxygenase. Component B is required to switch the oxidase activity of component A to methane mono-oxygenase activity, suggesting that the role of component B is to couple substrate oxidation to electron transfer, via the methane monooxygenase components. 相似文献
19.
Alan A. DiSpirito Andrew K. Shiemke Sean W. Jordan James A. Zahn Cinder L. Krema 《Archives of microbiology》1994,161(3):258-265
A cytochrome aa
3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a
3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa
3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa
3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO
methan monooxygenase
- sMMO
soluble methane monooxygenase
- pMMO
particulate methane monooxygenase
- TMPD
N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride
- Na2EDTA
disodium ethylenediamine-tetraacetic acid 相似文献
20.
A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).
下载免费PDF全文

1. The roles of the three protein components of soluble methane mono-oxygenase were investigated by the use of rapid-reaction techniques. The transfer of electrons through the enzyme complex from NADH to methane/O2 was also investigated. 2. Electron transfer from protein C, the reductase component, to protein A, the hydroxylase component, was demonstrated. Protein C was shown to undergo a three-electron--one-electron catalytic cycle. The interaction of protein C with NADH was investigated. Reduction of protein C was shown to be rapid, and a charge-transfer interaction between reduced FAD and NAD+ was observed; this intermediate was also found in static titration experiments. Thus the binding of NADH, the reduction of protein C and the intramolecular transfer of electrons through protein C were shown to be much more rapid than the turnover rate of methane mono-oxygenase. 3. The rate of transfer of electrons from protein C to protein A was shown to be lower than the reduction of protein C but higher than the turnover rate of methane mono-oxygenase. Association of the proteins was not rate-limiting. The amount of protein A present in the system had a small effect on the rate of reduction of protein C, indicating some co-operativity between the two proteins. 4. Protein B was shown to prevent electron transfer between protein C and protein A in the absence of methane. On addition of saturating concentrations of methane electron transfer was restored. With saturating concentrations of methane and O2 the observed rate constant for the conversion of methane into methanol was 0.26 s-1 at 18 degrees C. 5. By the use of [2H4]methane it was demonstrated that C-H-bond breakage is likely to be the rate-limiting step in the conversion of methane into methanol. 相似文献