首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The particulate membrane-bound methane hydroxylase (pMMOH) was isolated from methane-oxidizing cells of Methylococcus capsulatus (strain M). At SDS PAGE, pMMOH displays three bands: at 47 (α), 27 (β), and 25 kDa (γ). The ESR spectrum of pMMOH incubated with hydrogen peroxide (final concentration 20 mM) at 4°C exhibited, along with the copper signal of type II with g = 2.05, signals of cytochrome with g = 3.0 and of high-spin ferriheme with g = 6.00 After incubation at ?30°C, additional signals with g 8.5 and 13.5 were observed. These signals, which have not been recorded previously in pMMOH preparations, are due to an intermediate of the pMMOH active site, which arises in the reaction of hydrogen peroxide with pMMOH at ?30°C. It was established that this intermediate is a high-spin dimer [Fe(III)-Fe(IV)] with S = 9/2 and different degree of rhombic distortion of structure (it is responsible for both signals). Presumably, the signal with g = 8.5 also arises from the same dimer [Fe(III)-Fe(IV)], but with S = 7/2. The presence of the intermediate [Fe(III)-Fe(IV)] in pMMOH preparations suggests that the original state of the pMMOH active site is the dimer [Fe(III)-Fe(III)] which is located in the β-subunit and cannot be detected by ESR.  相似文献   

2.
Jiang W  Hoffart LM  Krebs C  Bollinger JM 《Biochemistry》2007,46(30):8709-8716
We recently showed that the class Ic ribonucleotide reductase from the human pathogen Chlamydia trachomatis uses a Mn(IV)/Fe(III) cofactor to generate protein and substrate radicals in its catalytic mechanism [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. Here, we have dissected the mechanism of formation of this novel heterobinuclear redox cofactor from the Mn(II)/Fe(II) cluster and O2. An intermediate with a g = 2 EPR signal that shows hyperfine coupling to both 55Mn and 57Fe accumulates almost quantitatively in a second-order reaction between O2 and the reduced R2 complex. The otherwise slow decay of the intermediate to the active Mn(IV)/Fe(III)-R2 complex is accelerated by the presence of the one-electron reductant, ascorbate, implying that the intermediate is more oxidized than Mn(IV)/Fe(III). M?ssbauer spectra show that the intermediate contains a high-spin Fe(IV) center. Its chemical and spectroscopic properties establish that the intermediate is a Mn(IV)/Fe(IV)-R2 complex with an S = 1/2 electronic ground state arising from antiferromagnetic coupling between the Mn(IV) (S(Mn) = 3/2) and high-spin Fe(IV) (S(Fe) = 2) sites.  相似文献   

3.
The ESR signals of the cytochromes in the Escherichia coli terminal oxidase cytochrome d complex were studied at cryogenic temperature. The intensities and g values of the rhombic high-spin signals changed when the electronic state of cytochrome d was changed from the oxidized state to the reduced or oxygen-binding or CO-binding state. These rhombic signals were therefore assigned to cytochrome b-595, which is located near cytochrome d in the oxidase complex. This assignment was supported by the finding that the Em value of the rhombic signals differed from that of cytochrome d (Hata, A. et al. (1985) Biochim. Biophys. Acta 810, 62-72). Photolysis and ligand-exchange experiments with the reduced CO complex of the oxidase were performed in the presence of oxygen at -140 degrees C. The ESR spectra of three intermediate forms trapped by controlled low temperatures were detected. These forms were designated as the oxygen-binding intermediate I (ESR-silent), oxygen-binding intermediate II (giving ESR signals at g = 6.3, 5.5 and 2.15), and oxygen-binding intermediate III (giving signals at g = 6.3, 5.5 and 6.0). From these results, electron flow in the cytochrome d complex is proposed to proceed in the order, cytochrome b-558----cytochrome b-595----cytochrome d----O2. A model of the mechanism of four-electron chemistry for oxidation of ubiquinol-8 and formation of H2O by the cytochrome d complex is presented.  相似文献   

4.
Chlorocatecholatoiron complexes, [Fe(TPA)(4Cl[bond]Cat)]BPh(4) and [Fe(TPA)(3Cl[bond]Cat)]BPh(4), (4Cl[bond]Cat and 3Cl[bond]Cat: 4- and 3-chlorocatecholates, respectively; TPA: tris(2-pyridylmethyl)amine) were isolated as intermediates for the oxygenative cleavage of chlorocatechols by nonheme iron complexes. Geometric structures of these complexes together with [Fe(TPA)(DTBC)]BPh(4) (DTBC: 3,5-di-tert-butylcatecholate) as reference were analyzed by X-ray absorption spectroscopy (EXAFS) in the solid state and in solution. Structure of the DTBC complex in the solid state was shown to be noticeably different from the other complexes as seen in the magnetic susceptibility and spectroscopic data. Electronic and magnetic properties of these complexes were studied by X-ray absorption (XANES), electronic (VIS) and ESR spectroscopies, and magnetic susceptibility. Electron transfer from the catecholate ligand to the Fe(III) center was indicated by the Fe[bond]K edge values in XANES spectra and by the LMCT bands in electronic spectra. Magnetic susceptibility and ESR data indicated that at low temperatures the complexes are in equilibrium between the low (S=1/2) and high-spin (S=5/2) ferric states with the latter component increasing with temperature. Remarkable differences between the spin states in solid and in solution were observed with the DTBC complex.  相似文献   

5.
Coordination reaction between linolenic-acid-hydroperoxide (LHPO) and chloro(5, 10, 15, 20-tetraphenyl)-porphyrinato iron (III), Fe(III)TPPCl, was investigated by means of ESR. ESR spectra of the ferric low-spin complex (g1 = 2.336, g2 = 2.174 and g3 = 1.929) was recorded for the mixture prepared by mixing Fe(III)TPPCl and LHPO at -78 degrees C in the presence of alkaline reagent. ESR line width of complex was broadened when 17O2 labeled LHPO was used for ESR measurement. In terms of the g-parameters of the ferric low-spin species, this complex was concluded to be Fe(III)TPP(-OCH3)(-OO-linolenic acid) type complex.  相似文献   

6.
A preliminary EPR investigation of iron accumulation in apoferritin has identified paramagnetic species generated during the early stage of iron deposition within the apoprotein shell. A featureless resonance at g' = 4.3, attributable to solitary high spin Fe3+ ions bound to the protein, is generated when Fe(II) is added to apoferritin at a level of 0.5 Fe/subunit (12 Fe/molecule) followed by air oxidation. This resonance accounts for 36% of the added iron. The remainder is EPR-silent and is probably present as oligomeric Fe3+ species. The intensity of the g' = 4.3 signal is reduced 3-fold upon anaerobic addition of 5 Fe(II)/subunit as a new iron resonance with g' values of 1.94, 1.87, and 1.80 is generated. This signal is observable only at temperatures near that of liquid helium and resists saturation at power levels of 100 milliwatts. Its distinctive g-factors, temperature dependence, and saturation characteristics suggest that it arises from a spin-coupled Fe(II)-Fe(III) dimer having a net electron spin of 1/2. In accord with this idea, the signal disappears when air is admitted, presumably because of oxidation of the Fe(II). The proposed mixed valence dimer may be an important intermediate formed during the initiation of core formation within the protein shell.  相似文献   

7.
It is well established that exposure of oxyhaemoglobin to ionizing radiation results in remarkably selective electron addition to the (FeO2) unit, giving a novel species, (FeO2)-, in which the extra electron is largely localized on iron and dioxygen. This work has now been extended to haemoglobin (Hb.) Iwate. The haemoglobin M. Iwate used is a mutant haemoglobin having only Fe(III) alpha-chains by oxy beta-chains (alpha 2 Met beta 2 oxy). The haem iron atoms in the alpha-chains are coordinated in the fifth site by a proximal tyrosine in place of histidine. This unit is a high-spin Fe(III) with axial symmetry and prominent electron spin resonance (ESR) features in the g = 6 and g = 2 regions. On exposure to 60Co gamma-rays at 77 K, efficient electron addition occurred at both types of iron centre, giving Fe(II) and (FeO2)- units. The former was monitored by the decrease of the g = 6 feature for Fe(III) and the latter by the growth of g-features at 2.254 (gx), 2.149 (gy) and 1.967 (gz). These values are close to those for the FeO2- centre formed in the beta-chains of normal oxyhaemoglobin. On annealing above 77 K, two changes occurred: first there was a small but clear increase in gx and gy, followed by a marked reduction in gx and gy giving g-values close to those for the centre formed directly in the alpha-chains of the normal protein. Finally, this intermediate species gave a centre having gx = 2.310, gy = 2.180 and gz = 1.935. These values are typical of low-spin Fe(III) haemoglobin and are assigned to the protonated complex, Fe(III)O2H. Ultimately at ca. room temperature, this was converted into the high-spin, met-form, with a gain in the g = 6 feature. These results established that the beta-chain centre in Hb. Iwate behave in the same way as isolated beta-chains. They also confirm that electron addition to the oxy-units is facile, even in the presence of Fe(III) units in each tetramer. The results also confirm that electron capture to give (FeO2)- units is not followed by internal electron-transfer to give Fe(II) from the Fe(III) centres in the alpha-chains.  相似文献   

8.
Treatment of the Cu(II)-Fe(III) derivative of pig allantoic fluid acid phosphatase with hydrogen peroxide caused irreversible inactivation of the enzyme and loss of half of the intensity of the visible absorption spectrum. Phosphate, a competitive inhibitor, protected against this inactivation, suggesting that it occurred as a result of a reaction at the active site. The native Fe(II)-Fe(III) enzyme was irreversibly inactivated by H2O2 to a much smaller extent than the Cu(II)-Fe(III) derivative, whereas the Zn(II)-Fe(III) derivative was stable to H2O2 treatment. The rates of inactivation of the Cu(II)-Fe(III) and Fe(II)-Fe(III) enzymes in the presence of H2O2 were increased by addition of ascorbate. These results suggest involvement of a Fenton-type reaction, generating hydroxyl radicals which react with essential active site groups. Experiments carried out on the Fe(II)-Fe(III) enzyme showed that irreversible inactivation by H2O2 in the presence of ascorbate obeyed pseudo first-order kinetics. A plot of kobs for this reaction against H2O2 concentration (at saturating ascorbate) was hyperbolic, giving kobs(max) = 0.41 +/- 0.025 min-1 and S0.5(H2O2) = 1.16 +/- 0.18 mM. A kinetic scheme is presented to describe the irreversible inactivation, involving hydroxyl radical generation by reaction of H2O2 with Fe(II)-Fe(III) enzyme, reduction of the product Fe(III)-Fe(III) enzyme by ascorbate and reaction of hydroxyl radical with an essential group in the enzyme.  相似文献   

9.
M?ssbauer effect and electron paramagnetic resonance (EPR) were measured for yeast aconitase [EC 4.2.1.3] purified from the cells of Candida lipolytica (ATCC 200114). M?ssbauer spectra suggested that yeast aconitase nostly contained two high-spin Fe(III) ions in an antiferromagnetically coupled binuclear complex that resembled oxidized 2 Fe ferredoxins, together with a small amount of high-spin Fe(II). EPR spectra recorded no signal at 77degreesK, but showed a slightly asymmetric signal centered at g=2.0 at 4.2degreesK, presumably due to the small amount of Fe(II) Fe(III) pairs.  相似文献   

10.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

11.
It has been firstly found that the bleomycin-vanadyl(IV) complex is effectively capable of cleaving DNA in the presence of hydrogen peroxide. The 1:1 bleomycin-VO(IV) complex has been characterized by ESR and electronic absorption spectra, and its ESR parameters (go = 1.982 and Ao = 93.5 G) are indicative of VO(N5) coordination type for the metal-binding environment. The mode of nucleotide sequence cleavage induced by the present bleomycin-VO(IV)-H2O2 complex system was appreciably different from the corresponding Fe(III) complex system. Of special interest is the fact that the bleomycin-vanadium complex system more preferentially attacked G-A(5'----3') sequences than the bleomycin-iron complex system.  相似文献   

12.
The soil bacterium Rhodococcus jostii RHA1 contains two dye-decolorizing peroxidases (DyPs) named according to the subfamily they represent: DypA, predicted to be periplasmic, and DypB, implicated in lignin degradation. Steady-state kinetic studies of these enzymes revealed that they have much lower peroxidase activities than C- and D-type DyPs. Nevertheless, DypA showed 6-fold greater apparent specificity for the anthraquinone dye Reactive Blue 4 (k(cat)/K(m) = 12800 ± 600 M(-1) s(-1)) than either ABTS or pyrogallol, consistent with previously characterized DyPs. By contrast, DypB showed the greatest apparent specificity for ABTS (k(cat)/K(m) = 2000 ± 100 M(-1) s(-1)) and also oxidized Mn(II) (k(cat)/K(m) = 25.1 ± 0.1 M(-1) s(-1)). Further differences were detected using electron paramagnetic resonance (EPR) spectroscopy: while both DyPs contained high-spin (S = (5)/(2)) Fe(III) in the resting state, DypA had a rhombic high-spin signal (g(y) = 6.32, g(x) = 5.45, and g(z) = 1.97) while DypB had a predominantly axial signal (g(y) = 6.09, g(x) = 5.45, and g(z) = 1.99). Moreover, DypA reacted with H(2)O(2) to generate an intermediate with features of compound II (Fe(IV)═O). By contrast, DypB reacted with H(2)O(2) with a second-order rate constant of (1.79 ± 0.06) × 10(5) M(-1) s(-1) to generate a relatively stable green-colored intermediate (t(1/2) ~ 9 min). While the electron absorption spectrum of this intermediate was similar to that of compound I of plant-type peroxidases, its EPR spectrum was more consistent with a poorly coupled protein-based radical than with an [Fe(IV)═O Por(?)](+) species. The X-ray crystal structure of DypB, determined to 1.4 ? resolution, revealed a hexacoordinated heme iron with histidine and a solvent species occupying axial positions. A solvent channel potentially provides access to the distal face of the heme for H(2)O(2). A shallow pocket exposes heme propionates to the solvent and contains a cluster of acidic residues that potentially bind Mn(II). Insight into the structure and function of DypB facilitates its engineering for the improved degradation of lignocellulose.  相似文献   

13.
An artificial peroxidase-like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III)-alpha,alpha,alpha,beta-meso-tetrakis(ortho-carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two-thirds of the porphyrin moiety is inserted in the binding site, its ortho-COOH substituents being recognized by amino-acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O-O bond of H2O2, but no amino-acid residue is acting as an axial ligand of the iron.We here show that the iron of 13G10-Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN-, but only one imidazole ligand, in contrast to to the iron(III) of Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2- and 4-alkyl-substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III)-tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso-[ortho-carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10-Fe(ToCPP) whereas it increases that of 13G10-Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10-Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10-Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10-Fe(DoCPP)-imidazole complex thus constitutes a nice artificial peroxidase-like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid-base catalyst like the distal histidine of peroxidases does.  相似文献   

14.
Free radicals or reactive oxygen species (ROS) are relatively short-lived and are difficult to measure directly; so indirect methods have been explored for measuring these transient species. One technique that has been developed using Escherichia coli and Saccharomyces cerevisiae systems, relies on a connection between elevated superoxide levels and the build-up of a high-spin form of iron (Fe(III)) that is detectable by electron paramagnetic resonance (EPR) spectroscopy at g?=?4.3. This form of iron is referred to as "free" iron. EPR signals at g?=?4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S?=?5/2) Fe(III) ions in sites of low symmetry. Unincorporated iron in this study refers to this high-spin Fe(III) that is captured by desferrioxamine which is detected by EPR at g value of 4.3. Previously, we published an adaptation of Fe(III) EPR methodology that was developed for Caenorhabditis elegans, a multi-cellular organism. In the current study, we have systematically characterized various factors that modulate this unincorporated iron pool. Our results demonstrate that the unincorporated iron as monitored by Fe(III) EPR at g?=?4.3 increased under conditions that were known to elevate steady-state ROS levels in vivo, including: paraquat treatment, hydrogen peroxide exposure, heat shock treatment, or exposure to higher growth temperature. Besides the exogenous inducers of oxidative stress, physiological aging, which is associated with elevated ROS and ROS-mediated macromolecular damage, also caused a build-up of this iron. In addition, increased iron availability increased the unincorporated iron pool as well as generalized oxidative stress. Overall, unincorporated iron increased under conditions of oxidative stress with no change in total iron levels. However, when total iron levels increased in vivo, an increase in both the pool of unincorporated iron and oxidative stress was observed suggesting that the status of the unincorporated iron pool is linked to oxidative stress and iron levels.  相似文献   

15.
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mo?ssbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mo?ssbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ~ 6 and g ~ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ~ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.  相似文献   

16.
《Inorganica chimica acta》1988,149(1):139-145
The stoichiometry and kinetics of the reaction between [Cu(dien)(OH)]+ and [Fe(CN)6]3− in aqueous alkaline medium are described. The rate equation − (d[Fe(III)]/dt = {k1[OH]2[[Cu(dien)(OH)]+] + k2[OH] × [[Cu(dien)(OH)]+]2}([Fe(III)]/[Fe(II)]) (Fe(III) = [Fe(CN)6]3−; Fe(II) = [Fe(CN)6]4−, the 4:4:1 OH/Fe(III)/[Cu(dien)(OH)]+ stoichiometric ratio and the nature of the ultimate products identified in the reaction solution suggest the fast formation of a doubly deprotonated Cu(III)-diamido complex which slowly undergoes an internal redox process where the ligand is oxidised to the Schiff base H2NCH2CH2NCHCHNH.The [[Cu(dien)(OH)]+]2 term in the rate equation is explained with the formation of a transient μ-hydroxo mixed-valence Cu dimer. A two-electron internal reduction of the Cu(III) complex yielding a Cu(I) intermediate is suggested to account for the presence of monovalent copper in a precipitate which forms at relatively high reactant concentrations and in the absence of dioxygen.  相似文献   

17.
The alkyldiazenes RN = NH (R = CH3 or C2H5) react with reduced microsomal cytochrome P450 leading to complexes exhibiting a Soret peak at 446 nm. Upon oxidation of the [cytochrome P450-Fe(II)(CH3N = NH)] complex with limited amounts of dioxygen, a new complex characterized by a Soret peak at 486 nm is formed. The latter complex was also formed upon slow reaction of methyldiazene with microsomal cytochrome P450-Fe(III) or in situ oxidation of methylhydrazine by limited amounts of O2 or ferricyanide. This complex is rapidly destroyed by O2 or ferricyanide in excess and more slowly by excess dithionite in the presence of CO. Reactions of ethyldiazene or benzyldiazene with cytochrome P450-Fe(III) afforded similar complexes characterized by Soret peaks around 480 nm. These results, when compared to those recently described on reactions of monosubstituted hydrazines RNHNH2 and diazenes RN = NH with hemoglobin and iron-porphyrins, are consistent with a [cytochrome P450-Fe(II)(RN = NH)] structure for the 446-nm-absorbing complexes and a sigma-alkyl cytochrome P450-Fe(III)-R structure for the complexes characterized by a Soret peak around 480 nm. They also suggest a sigma-cytochrome P450-Fe(III)-Ph structure for the complex derived from phenylhydrazine oxidation, recently described in the literature. Finally, they provide the first evidence that cytochrome P450-Fe(III)-R complexes are formed upon microsomal oxidation of alkyl or phenylhydrazines.  相似文献   

18.
Changes in epsilon (393) (the Soret band) of aqueous ferriprotoporphyrin IX [Fe(III)PPIX] with concentration indicate that it dimerizes, but does not form higher aggregates. Diffusion measurements support this observation. The diffusion coefficient of aqueous Fe(III)PPIX is half that of the hydrated monomeric dicyano complex. Much of the apparent instability of aqueous Fe(III)PPIX solutions could be attributed to adsorption onto glass and plastic surfaces. However, epsilon (347) was found to be independent of the aggregation state of the porphyrin and was used to correct for the effects of adsorption. The UV-vis spectrum of the aqueous dimer is not consistent with that expected for a mu-oxo dimer and the (1)H NMR spectrum is characteristic of five-coordinate, high-spin Fe(III)PPIX. Magnetic susceptibility measurements using the Evans method showed that there is no antiferromagnetic coupling in the dimer. By contrast, when the mu-oxo dimer is induced in 10% aqueous pyridine, characteristic UV-vis and (1)H NMR spectra of this species are observed and the magnetic moment is consistent with strong antiferromagnetic coupling. We propose a model in which the spontaneously formed aqueous Fe(III)PPIX dimer involves noncovalent interaction of the unligated faces of two five-coordinate H(2)O/HO-Fe(III)PPIX molecules, with the axial H(2)O/OH(-) ligands directed outwards. This arrangement is consistent with the crystal structures of related five-coordinate iron(III) porphyrins and accounts for the observed pH dependence of the dimerization constant and the spectra of the monomer and dimer. Structures for the aqueous dimer are proposed on the basis of molecular dynamics/simulated annealing calculations using a force field previously developed for modeling metalloporphyrins.  相似文献   

19.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

20.
Low-temperature electron spin resonance spectroscopy was used to investigate the redox centres of Micrococcus luteus membranes. Three different types of iron-sulphur centres were distinguished. Two of these, a [4Fe-4S]3+-type cluster giving rise to a signal at g = 2.01 in the oxidized state and a [2Fe-2S] cluster with a spectrum at g = 2.03 and 1.93 in the reduced state, were attributable to succinate dehydrogenase. Another, generating signals in the reduced state at g = 2.027, 1.90 and 1.78 was identified as a 'Rieske' iron-sulphur centre. This latter cluster had a mid-point potential (pH 7.0) of +130 mV. In addition, signals characteristic of high-spin ferric haem (g = 6.20), low-spin ferric haem (g = 3.67, 3.36 and 3.01) and Cu2+ (g = 2.18 and 2.02) were also detected. The ferric-haem features, together with the Cu2+ and 'Rieske' centres, were enriched in membrane residues insoluble in Triton X-100, which are known from difference spectroscopy to contain cytochromes b-560, c-550 and a-601 (aa3 oxidase). The signals demonstrated by electron spin resonance for M. luteus membranes showed marked similarities to those documented for the complexes II, III, and IV of mitochondria. However, signals analogous to complex I (NADH-ubiquinone reductase) could not be demonstrated for M. luteus membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号