首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behaviour of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) was studied by differential scanning calorimetry and 31P-NMR spectroscopy. Modulation of the phase behaviour of POPE by 1-palmitoyl-2-oleoylphosphatidylserine (POPS). 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1,2-di-olein (DOG), CaCl2, MgCl2, and combinations of these substances was studied. The bilayer-forming lipids, POPS and POPC, raise the bilayer-to-hexagonal phase-transition temperature of POPE. The POPC has a greater effect than POPS, probably because the former lipid is more miscible with POPE. Addition of 10 mM CaCl2 has little effect on the phase-transitions of POPE/POPC mixtures, but it greatly decreases the effectiveness of POPS in raising the bilayer-to-hexagonal phase-transition temperature of POPE. The effectiveness of DOG in lowering the phase-transition temperature of POPE is also greatly reduced in the presence of 10 mM CaCl2. This phenomenon may play a role in the negative feedback regulation of protein kinase C.  相似文献   

2.
The lecithins 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) have been synthesized by reacylation of the appropriate lysolecithins with fatty acid anhydrides. These lecithins have been used to make model membranes in mixtures with dipalmitoyllecithin (DPPC), and phase diagrams of the two bilayer systems have been constructed. These diagrams show that there is essentially no gel-state miscibility in the POPC-DPPC bilayers at any composition, and that SOPC-DPPC bilayers show gel-state immiscibility at DPPC concentrations of less than 50 mol%, and partial miscibility above 50 mol% DPPC. Analysis of the POPC-DPPC phase diagram on the assumption of athermal solution in the liquid-crystalline phase shows that the two lipids mix nearly randomly above the phase transition. The liquidus curve of SOPC-DPPC bilayers showed deviations from calculated ideal behaviour, which indicated that there is a small excess tendency for the formation of pairs of like molecules in SOPC-DPPC bilayers in the liquid-crystalline phase. Thus, in the liquid-crystalline phase, SOPC and DPPC do not pack quite as well as do POPC and DPPC.  相似文献   

3.
Arnulphi C  Jin L  Tricerri MA  Jonas A 《Biochemistry》2004,43(38):12258-12264
The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.  相似文献   

4.
Lipids containing the dimethyl BODIPY fluorophore are used in cell biology because their fluorescence properties change with fluorophore concentration (C.-S. Chen, O. C. Martin, and R. E. Pagano. 1997. Biophys J. 72:37-50). The miscibility and steady-state fluorescence behavior of one such lipid, 1-palmitoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (PBPC), have been characterized in mixtures with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC). PBPC packs similarly to phosphatidylcholines having a cis-unsaturated acyl chain and mixes nearly ideally with SOPC, apparently without fluorophore-fluorophore aggregation. Increasing PBPC mole fraction from 0.0 to 1.0 in SOPC membranes changes the emission characteristics of the probe in a continuous manner. Analysis of these changes shows that emission from the excited dimethyl BODIPY monomer self quenches with a critical radius of 25.9 A. Fluorophores sufficiently close (< or =13.7 A) at the time of excitation can form an excited dimer, emission from which depends strongly on total lipid packing density. Overall, the data show that PBPC is a reasonable physical substitute for other phosphatidylcholines in fluid membranes. Knowledge of PBPC fluorescence in lipid monolayers has been exploited to determine the two-dimensional concentration of SOPC in unilamellar, bilayer membranes.  相似文献   

5.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

6.
The effect of sphingomyelin (SM), one of the main lipids in the external monolayer of erythrocyte plasma membrane, on the ability of the hemolytic peptide melittin to permeabilize liposomes was investigated. The peptide induced contents efflux in large unilamellar vesicles (LUV) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/SM (1:1 mole ratio), at lower (>1:10,000) peptide-to-lipid mole ratios than in pure POPC (>1:1000) or POPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) (1:1 mole ratio) (>1:300) vesicles. Analysis of the leakage data according to a kinetic model of pore formation showed a good fit for hexameric-octameric pores in SM-containing vesicles, whereas mediocre fits and lower surface aggregation constants were obtained in POPC and POPC/POPG vesicles. Disturbance of lateral separation into solid (s(o)) and liquid-disordered (l(d)) phases in POPC/SM mixtures increased the peptide-dose requirements for leakage. Inclusion of cholesterol (Chol) in POPC/SM mixtures under conditions inducing lateral separation of lipids into liquid-ordered (l(o)) and l(d) phases did not alter the number of melittin peptides required to permeabilize a single vesicle, but increased surface aggregation reversibility. Partitioning into liposomes or insertion into lipid monolayers was not affected by the presence of SM, suggesting that: (i) melittin accumulated at comparable doses in membranes with different SM content, and (ii) differences in leakage were due to promotion of melittin transmembrane pores under coexistence of s(o)-l(d) and l(o)-l(d) phases. Our results support the notion that SM may regulate the stability of size-defined melittin pores in natural membranes.  相似文献   

7.
L Gr?nberg  J P Slotte 《Biochemistry》1990,29(13):3173-3178
The catalytic activity of cholesterol oxidase from Streptomyces sp. in mixed monolayers of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), N-oleoylsphingomyelin (O-SPM), and cholesterol (CHL) has been determined at lateral surface pressures between 10 and 30 mN/m. The highest cholesterol oxidase activity (determined at 37 degrees C) was observed at surface pressures around 20 mN/m in a POPC/CHL monolayer (50:50 mol %). Above and below this surface pressure, the enzyme activity decreased markedly. A similar optimal activity vs surface pressure relationship was observed also for an O-SPM/CHL monolayer (50:50 mol %). The activity of cholesterol oxidase toward cholesterol in the O-SPM/CHL monolayer was, however, less than in the corresponding POPC mixed monolayer. The surface activity of cholesterol oxidase decreased markedly when the temperature was lowered to 20 degrees C, and hardly any enzyme activity was observed in an O-SPM/CHL monolayer at 25 mN/m or above. With a monolayer containing POPC/O-SPM/CHL (42:18:40 mol %), maximal cholesterol oxidase activity was observed at the lowest surface pressure tested (i.e., 10 mN/m), and the catalytic activity decreased markedly with increasing lateral surface pressures in the monolayer. The results of this study show (i) that the activity of cholesterol oxidase in general is highly dependent on the lateral surface pressure in the substrate membranes and (ii) that sphingomyelin, by interacting tightly with cholesterol, can prevent or restrain the accessibility of cholesterol for oxidation by cholesterol oxidase.  相似文献   

8.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

9.
The effect of sphingomyelin (SM), one of the main lipids in the external monolayer of erythrocyte plasma membrane, on the ability of the hemolytic peptide melittin to permeabilize liposomes was investigated. The peptide induced contents efflux in large unilamellar vesicles (LUV) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/SM (1:1 mole ratio), at lower (>1:10,000) peptide-to-lipid mole ratios than in pure POPC (>1:1000) or POPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) (1:1 mole ratio) (>1:300) vesicles. Analysis of the leakage data according to a kinetic model of pore formation showed a good fit for hexameric-octameric pores in SM-containing vesicles, whereas mediocre fits and lower surface aggregation constants were obtained in POPC and POPC/POPG vesicles. Disturbance of lateral separation into solid (so) and liquid-disordered (ld) phases in POPC/SM mixtures increased the peptide-dose requirements for leakage. Inclusion of cholesterol (Chol) in POPC/SM mixtures under conditions inducing lateral separation of lipids into liquid-ordered (lo) and ld phases did not alter the number of melittin peptides required to permeabilize a single vesicle, but increased surface aggregation reversibility. Partitioning into liposomes or insertion into lipid monolayers was not affected by the presence of SM, suggesting that: (i) melittin accumulated at comparable doses in membranes with different SM content, and (ii) differences in leakage were due to promotion of melittin transmembrane pores under coexistence of so-ld and lo-ld phases. Our results support the notion that SM may regulate the stability of size-defined melittin pores in natural membranes.  相似文献   

10.
It is shown that good estimates of the activity of cholesterol in phosphatidylcholine-cholesterol mixed model membranes are obtained by examining the orientational order parameter S of cholestane spin probe (CSL) that is obtained from electron spin resonance by spectral simulation. By introducing thermodynamic stability conditions of liquid mixtures, the variation of activity (or S) as a function of cholesterol mole fraction is utilized to predict the concentration at which the phase separation occurs. These results for DMPC and cholesterol binary mixtures agree very well with those of Tempo-partitioning experiments. The comparison of activity coefficients and the phase boundary in DMPC/cholesterol mixtures with those of POPC/cholesterol mixtures suggests that acyl chain unsaturation leads to poorer mixing of cholesterol in phosphatidylcholine model membranes at higher temperatures (i.e., greater than 35 degrees C). In ternary solutions of DMPC, POPC, and cholesterol, it is found that cholesterol shows less deviation from ideality than in either of the two binary mixtures, and this implies that the phase separation occurs at higher cholesterol concentration than in either of the two binary mixtures. The present analysis suggests that there may not be a critical point in DMPC/cholesterol mixtures, even though phase separation does occur.  相似文献   

11.
We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern.At molar fraction cholesterol 0.6 and higher and at temperatures above 70 degrees C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.  相似文献   

12.
M Jaworsky  R Mendelsohn 《Biochemistry》1985,24(14):3422-3428
CaATPase from rabbit sarcoplasmic reticulum has been reconstituted into binary lipid mixtures of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE)/1,2-dipalmitoylphosphatidylcholine-d62 (DPPC-d62) and 1-stearoyl-2-oleoylphosphatidylcholine (SOPC)/DPPC-d62. Fourier-transform infrared (FT-IR) spectroscopy has been used to monitor temperature-induced structural alterations in the individual lipid components in the presence and absence of protein. A simple two-state model is used to construct a phase diagram that is in good agreement with one constructed from differential scanning calorimetry data, for the POPE/DPPC-d62 (protein-free) system. Although these two lipids are miscible over at least most of the composition range, substantial deviations from ideal behavior are observed. An estimate of the nonideality of mixing in both the gel and liquid-crystalline phases is obtained from regular solution theory. The phase diagram for SOPC/DPPC-d62 shows gel-phase immiscibility. FT-IR studies of ternary (POPE/DPPC-d62/CaATPase) complexes indicate that both lipid components are disordered by protein at all temperatures studied. In addition, their melting events are broadened and shifted to lower temperatures compared with the appropriate binary lipid mixture. Semiquantitative estimates for the fraction of each lipid melted are obtained from the model. The effect of protein on SOPC/DPPC-d62 mixtures depends on that total lipid to protein ratio. At low protein levels, SOPC is preferentially selected by CaATPase, so that bulk lipid is enriched in DPPC-d62. At high levels of protein, both lipid components are selected. The applicability of vibrational spectroscopy for determination of the partitioning preferences of membrane proteins into regions of particular chemical structure or physical order in a complex lipid environment is demonstrated.  相似文献   

13.
The orientational order and rotational dynamics of 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl] carbon yl]-3-sn-phosphatidylcholine (DPH-PC) in dilinoleoylphosphatidylethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) binary lipid mixtures were investigated. A previous study (Biochim. Biophys. Acta 731 (1983) 177) indicated that the empirical phase diagram of POPC/DLPE can roughly be divided into three zones. They are the lamellar (15% PC and higher), intermediate (5-15% PC) and inverted hexagonal (0-5% PC) phases. As the lipids changed from the lamellar to intermediate phase, the order parameter increased at all temperatures (1-50 degrees C). On the contrary, the rotational diffusion decreased at high temperatures (20-50 degrees C) but increased at low temperatures (1-10 degrees C). These results indicate that the intermediate phase is in a stressed state at high temperatures but in a highly mobile amorphous state at low temperatures. As the lipid progressed from the intermediate toward hexagonal phase, the order parameter decreased abruptly at all temperatures. The ratio of order parameter in the intermediate phase to that in the hexagonal phase was calculated. This ratio was found to increase linearly with temperature, indicating that a distinct change in the packing symmetry of lipids occurred as temperature increased. From the intermediate to hexagonal phase, the rotational diffusion increased slightly at high temperatures but declined abruptly at low temperatures. These results further agreed with the stressed and amorphous natures of the intermediate phases as described above.  相似文献   

14.
Binary phase diagrams have been constructed from differential scanning calorimetry (DSC) data for the systems 1-palmitoyl-2-oleylphosphatidylcholine (POPC)/dimyristoylphosphatidylcholine (DMPC), POPC/dipalmitoylphosphatidylcholine (DPPC) and POPC/distearoylphosphatidylcholine (DSPC). Mixtures of POPC with DMPC exhibit complete miscibility in the gel and liquid crystalline states. Mixtures of POPC with DPPC or with DSPC exhibit gel phase immiscibility over the composition range 0-75% DPPC (or DSPC). These results, when taken together with previous studies of mixtures of phosphatidylcholines, are consistent with the hypothesis that PCs whose order-disorder transition temperatures (Tm values) differ by less than 33 deg. C exhibit gel state miscibility. Those whose Tm values differ by more than 33 deg. C exhibit gel state immiscibility. 2H-NMR spectroscopy has been used to further study mixed model membranes composed of POPC and DPPC, in which either lipid has been labeled with deuterium in the 2-, 10- or 16-position of the palmitoyl chain(s) or in the N-methyls of the choline head group. POPC/DPPC mixtures in the liquid crystalline state are intermediate in order between pure POPC and DPPC at the same temperature. The POPC palmitoyl chain is always more disordered than the palmitoyl chains of DPPC in liquid crystalline POPC/DPPC mixtures. This is attributed to the fact that a POPC palmitoyl chain is constrained by direct bonding to have at least one oleyl chain among its nearest neighbors, while a DPPC palmitoyl chain must have at least one neighboring palmitoyl chain. When liquid crystalline POPC, DPPC and POPC/DPPC mixtures are compared at a reduced temperature (relative to the acyl chain order-disorder transition), POPC/DPPC mixtures are more disordered than predicted from the behavior of the pure components, in agreement with enthalpy data derived from DSC studies. Within the temperature range of the broad phase transition of 1:1 POPC/DPPC, a superposition of gel and liquid crystalline spectra is observed for 1:1 POPC/[2H]DPPC, while 1:1[2H]POPC/DPPC exhibits only a liquid crystalline spectrum. Thus, at temperatures within the phase transition region, the liquid crystalline phase is POPC-rich and the gel phase is DPPC-rich. Comparison of the liquid crystalline quadrupole splittings within the thermal phase transition range suggests that mixing of the residual liquid crystalline POPC and DPPC is highly non-ideal.  相似文献   

15.
This study uses low-angle (LAXS) and wide-angle (WAXS) X-ray synchrotron scattering, volume measurements and thin layer chromatography to determine the structure and interactions of SOPC, SOPC/cholesterol mixtures, SOPC/peptide and SOPC/cholesterol/peptide mixtures. N-acetyl-LWYIK-amide (LWYIK) represents the naturally-occurring CRAC motif segment in the pretransmembrane region of the gp41 protein of HIV-1, and N-acetyl-IWYIK-amide (IWYIK), an unnatural isomer, is used as a control. Both peptides thin the SOPC bilayer by approximately 3 A, and cause the area/unit cell (peptide+SOPC) to increase by approximately 9 A2 from the area/lipid of SOPC at 30 degrees C (67.0+/-0.9 A2). Model fitting suggests that LWYIK's average position is slightly closer to the bilayer center than IWYIK's, and both peptides are just inside of the phosphate headgroup. Both peptides increase the wide-angle spacing d of SOPC without cholesterol, whereas with 50% cholesterol LWYIK increases d but IWYIK decreases d. TLC shows that LWYIK is more hydrophobic than IWYIK; this difference persists in peptide/SOPC 1:9 mole ratio mixtures. Both peptides counteract the chain ordering effect of cholesterol to roughly the same degree, and both decrease KC, the bending modulus, thus increasing the SOPC membrane fluidity. Both peptides nucleate crystals of cholesterol, but the LWYIK-induced crystals are weaker and dissolve more easily.  相似文献   

16.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

17.
We have used a computer-controlled differential scanning calorimeter to determine the phases present in mixtures of the brain galactocerebrosides with other representative brain lipids. There are two types of brain galactocerebroside, those which possess an alpha-hydroxy substituent on the acyl chain (HFA) and those that do not (NFA). In the liquid crystalline state both cerebrosides were miscible with all the lipids studied, but in the gel state they were immiscible with cholesterol and the brain phosphatidylcholines. However, cholesterol mixtures in which the cholesterol mole fraction exceeded one third formed homogeneous metastable gel states on cooling from above the melting point of the cerebroside. Relaxation to the stable two phase state took place slowly over several hours. The solubilities of the galactocerebrosides in the other main brain sphingolipid, sphingomyelin, were much higher. Only in the case of the NFA galactocerebroside and at low mole fractions of sphingomyelin was immiscibility detected. Ternary mixtures of the two cerebrosides with sphingomyelin/cholesterol and phosphatidylcholine/cholesterol (PC/Chol) showed different miscibility characteristics. On cooling from 80 degrees C all mixtures formed homogeneous gel states. However, on standing the cerebrosides separated into discrete gel phases in all mixtures but one, that in which HFA galactocerebrosides were mixed with sphingomyelin and cholesterol. The cerebroside in the mixture with the composition closest to that of myelin, HFA/PC/Chol, melted at 38 degrees C. On scanning guinea pig CNS myelin which had been equilibrated at 5 degrees C a transition was detected with Tmax 33 degrees C. On the basis of comparison with the HFA/PC/Chol mixture we propose that the transition in myelin at this temperature is due to the melting of a galactocerebroside gel phase.  相似文献   

18.
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion.  相似文献   

19.
Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol   总被引:13,自引:0,他引:13  
The paramagnetic resonance spectra of two spin-labels, 2,2,6,6-tetramethylpiperadinyl-1-oxy and a head-group spin-labeled phosphatidylethanolamine (L-alpha-dipalmitoylphosphatidyl-N-ethanolamine), have been used to study solid-liquid and liquid-liquid phase separations in binary mixtures of dimyristoylphosphatidylcholine and cholesterol. A quantitative analysis of these resonance spectra supports the view that at temperatures below theta m, the chain-melting temperature of the phospholipid, and at cholesterol mole fractions Xc less than 0.2, these mixtures consist of two phases, a solid phase of essentially pure dimyristoylphosphatidylcholine and a fluid phase having a mole fraction of cholesterol equal to 0.2. The spin-label data also provide evidence for fluid-fluid immiscibility in the bilayer membrane at temperatures above the chain melting transition temperature of dimyristoylphosphatidylcholine.  相似文献   

20.
For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region. Two-component EPR spectra and several tie lines attributable to coexistence of gel (L(β)) and fluid phases are found for ternary mixtures with low cholesterol or low POPC content. For PSM/POPC alone, coexistence of L(α) and L(β) phases occurs over the range 50-95.5 mol % PSM. A further tie line is found at 3 mol % chol with endpoints at 50 and ≥77 mol % PSM. For PSM/chol, L(β)-L(o) coexistence occurs over the range 10-38 mol % chol and further tie lines are found at 4.5 and 7 mol % POPC. Two-component EPR spectra indicative of fluid-fluid (L(α)-L(o)) phase separation are found for lipid compositions: 25%POPC>10%, and confirmed by nonlinear EPR. Tie lines are identified in the L(α)-L(o) coexistence region, indicating that the fluid domains are of sufficient size to obey the phase rule. The three-phase triangle is bounded approximately by the compositions 40 and 75 mol % PSM with 10 mol % chol, and 60 mol % PSM with 25 mol % chol. These studies define the compositions of raft-like L(o) phases for a minimal realistic biological lipid mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号