首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa.

Results

Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles.

Conclusion

Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.  相似文献   

2.
The fine structure of the obliquely striated muscle cells of the longitudinal muscle of an annelid was investigated. The characteristics of myofilaments and cell components, such as sarcoplasmic reticular system (S.R.), T-systems and J-rods corresponded to those previously reported, but it was noted for the first time that the cells could be classified into two types with respect to the diameters of their thick myofilaments. In one type, the thick myofilaments were about 29 nm in diameter (A-type) and in the other they were about 41 nm in diameter (B-type). Most of the obliquely striated muscles described to date have been composed of a single type of cell, but we found two types of cell mixed together in the longitudinal muscle. The A-type cells with slender thick myofilaments were distributed mainly in the inner part of the muscle and the B-type cells with broader thick myofilaments were distributed in the outer part.  相似文献   

3.
The systematic position of Polygordiidae is still under debate. They have been assigned to various positions among the polychaetes. Recent molecular analyses indicate that they might well be part of a basal radiation in Annelida, suggesting that certain morphological characters could represent primitive character traits adopted from the annelid stem species. To test this hypothesis, an investigation of the muscular and nervous systems by means of immunological staining and confocal laser scanning microscopy and transmission electron microscopy was conducted. With the exception of the brain, the nervous system is entirely basiepidermal and consists of the brain, the esophageal connectives, the subesophageal region, the ventral nerve cord and several smaller longitudinal nerves. These are connected by a considerable number of ring nerves in each segment. The ventral nerve cord is made up of closely apposed longitudinal neurite bundles, a median and two larger lateral ones. Since distinct ganglia are lacking, it represents a medullary cord. The muscular system mainly consists of longitudinal fibers, regularly distributed oblique muscles and strong septa. The longitudinal fibers form a right and a left unit separated along the dorsal midline, each divided into a dorsal and ventral part by the oblique muscles. Anteriorly, the longitudinal musculature passes the brain and terminates in the prostomium. There is no musculature in the palps. In contrast to earlier observations, regularly arranged minute circular muscle fibers are present. Very likely, a basiepithelial and non-ganglionic organization of the ventral nerve cord as well as an orthogonal nervous system represent plesiomorphic characters. The same applies for the predominance of longitudinal muscle fibers.  相似文献   

4.
The gastrotrich muscular system is characterized by band-like muscles arranged in orientations that reflect both function and phylogeny. To better understand the evolution of the Dactylopodolidae, a putative primitive lineage and potential sister group to other extant macrodasyidans, we have used a fluorescent phalloidin stain to visualize muscle patterns in the marine gastrotrich Dactylopodola baltica and eight other species of Macrodasyida from four families. The musculature of D. baltica is arranged as a series of circular, helicoidal and longitudinal bands around the digestive tract. Circular muscles and longitudinal muscles were found in splanchnic and somatic positions. Helicoidal muscles, in 50–60° angles with respect to the longitudinal body axis, surrounded circular and longitudinal splanchnic muscles in a spiralling orientation. The largest longitudinal muscles were the ventrolateral bands composed of numerous cross-striated myocytes arranged in parallel arrays. The overall arrangement of the muscular system of D. baltica showed several similarities to other macrodasyidan gastrotrichs, including the presence and location of circular, helicoidal and longitudinal muscles, their orientation with respect to the longitudinal body axis and their points of insertion. Unique to D. baltica is the anterior and posterior arrangement of the ventrolateral muscles and the orientation of muscle branches that supply the ventral and dorsal aspects of the pharynx. Muscle data from observations of D. baltica and eight additional species were coded as phylogenetic characters, mapped onto a cladogram and compared to an existing phylogeny of the order. The direction of evolutionary change in specific muscle groups was inferred, as was the ground pattern of muscles for the Macrodasyida.  相似文献   

5.
As a taxon of the lophotrochozoans, annelids have re-entered scientific investigations focusing on plesiomorphic bilaterian features and the evolutionary changes therein. The view of a clitellate-like plesiomorphic muscle arrangement in annelids has been challenged by recent investigations of polychaete muscle organization. However, there are few investigations of muscle formation in clitellate species that address this problem. Direct comparison of potential homologous muscles between these annelid groups is thus hampered. Somatic muscle formation during embryogenesis of two clitellates-the oligochaete Limnodrilus sp. and the hirudinean Erpobdella octoculata-occurs by distinct processes in each species, even though they share a closed outer layer of circular and an inner layer of longitudinal muscles characteristic of clitellates. In E. octoculata, the first emerging longitudinal muscles are distributed irregularly on the body surface of the embryo whereas the circular muscles appear in an orderly repetitive pattern along the anterioposterior axis. Both primary muscle types consist of fiber-bundles that branch at both their ends. This way the circular muscle bundles divide into a fine muscle-grid. The primary longitudinal muscles are incorporated into a second type of longitudinal muscles, the latter starting to differentiate adjacent to the ventral nerve cord. Those secondary muscles emerge in a ventral to dorsal manner, enclosing the embryo of E. octoculata. In Limnodrilus sp., one dorsal and one ventral bilateral pair of primary longitudinal muscles are established initially, elongating toward posterior. Initial circular muscles are emerging in a segmental pattern. Both muscle layers are completed later in development by the addition of secondary longitudinal and circular muscles. Some features of embryonic longitudinal muscle patterns in Limnodrilus sp. are comparable to structures found in adult polychaete muscle systems. Our findings show that comparative studies of body-wall muscle formation during clitellate embryogenesis are a promising approach to gain further information on annelid muscle arrangements.  相似文献   

6.
During early development of Eisenia andrei (Crassiclitellata), a loose arrangement of primary circular and longitudinal muscles encloses the whole embryo. Circular muscles differentiate in an anterior–posterior progression creating a segmental pattern. Primary circular muscles emerge at the segmental borders while later in development the central part of each segment is filled with circular strands. Longitudinal muscles develop in an anterio‐posterior manner as well, but by continuous lengthening. Muscle growth is not restricted by segmental boundaries. The development begins with one pair of prominent longitudinal muscles differentiating ventrally along the right and the left germ band. These first muscles provide a guiding structure for the parallel organization of the afterwards differentiating longitudinal musculature. Additional primary longitudinal muscles emerge and form, together with the initial circular muscles, the primary muscle grid of the embryo. During the following development, secondary longitudinal muscle strands develop and integrate themselves into the primary grid. Meanwhile the primary circular muscles split into thin strands in a ventral to dorsal progression. Thus, a fine structured mesh of circular and longitudinal muscles is generated. Compared to other “Oligochaeta”, embryonic muscle patterns in E. andrei are adapted to the development of a lecithotrophic embryo. Nevertheless, two general characteristics of annelid muscle development become evident. The first is the segmental development of the circular muscles from a set of initial muscles situated at the segment borders. Second, there is a continuous development of primary longitudinal muscles starting at the anterior pole. At least one pair of main primary longitudinal strands is characteristic in Annelida. The space between all primary strands is filled with secondary longitudinal strands during further development. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Studies of rare genomic marker systems suggest that Myzostomida are a subgroup of Annelida and phylogenomic analyses indicate an early divergence of this taxon within annelids. However, adult myzostomids show a highly specialized body plan, which lacks typical annelid features, such as external body annulation, coelomic cavities with metanephridia, and segmental ganglia of the nervous system. The putative loss of these features might be due to the parasitic/symbiotic lifestyle of myzostomids associated with echinoderms. In contrast, the larval anatomy and adult locomotory system resemble those of annelids. To clarify whether the myoanatomy of myzostomids reflects their relationship to annelids, we analyzed the distribution of f‐actin, a common component of muscle fibers, in specimens of Myzostoma cirriferum using phalloidin‐rhodamine labeling in conjunction with confocal laser‐scanning microscopy. Our data reveal that the musculature of the myzostomid body comprises an outer circular layer, an inner longitudinal layer, numerous dorsoventral muscles, and prominent muscles of the parapodial complex. These features correspond well with the common organization of the muscular system in Annelida. In contrast to other annelids, however, several elements of the muscular system in M. cirriferum, including the musculature of the body wall, and the parapodial flexor muscles, exhibit radial symmetry overlaying a bilateral body plan. These findings are in line with the annelid affinity of myzostomids and suggest that the apparent partial radial symmetry of M. cirriferum arose secondarily in this species. Based on our data, we provide a scenario on the rearrangements of muscle fibers that might have taken place in the lineage leading to this species. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Summary The three-dimensional architecture of the human isthmic myosalpinx is directly visualized by means of scanning electron microscopy after removal of interstitial connective tissue through NaOH maceration and ultrasound microdissection. These investigations show that the myosalpinx is composed of irregularly running bundles of smooth muscle cells, changing their orientation within the myosalpinx and displaying longitudinal, oblique and circular directions. The muscular bundles anastomose and intermingle with other bundles running at different levels in the oviduct wall, and actually give rise to a wide and complex muscular network in which no distinct layers are readily discernible. These morphological data are consistent with the physiological findings that the transport of gametes and embryo in very early stages in the isthmic portion of the oviduct tube is the result of a discontinuous pattern of forward and backward movements.  相似文献   

9.
The media of the rat hepatic portal vein is composed of an internal circular muscular layer (CL) and an external longitudinal muscular layer (LL). These two perpendicular layers differentiate progressively from mesenchymal cells within the first month after birth. In this paper, we studied the development of calcitonin gene-related peptide (CGRP) innervation during post-natal differentiation of the vessel. We show that CGRP innervation is already present around the vessel at birth in the future adventitia but far from the lumen of the vessel. Progressively, CGRP immunoreactive fibers reached first LL then CL. CL by itself become only innervated at day 14 after birth. This corresponds to the time at which thick filaments (myosin) are visible in electron microscopy and desmin visualisable by immunocytochemistry. Furthermore, we provide evidence by autoradiography, that binding sites for CGRP are transiently expressed on the portal vein media at day 1 and 14 after birth. Vascular smooth muscle cells were transfected with constructs containing promoters for desmin or smooth muscle myosin heavy chain (smMHC). CGRP treatment of the cells significantly increased the expression of smMHC. Overall these results suggest that CGRP can potentially influence the differentiation of smooth muscle cells from the vessel wall.  相似文献   

10.
Summary A quantitative ultrastructural study was made of the neuntes forming the deep muscular and circular muscle plexuses of the guinea-pig small intestine following microsurgical lesions designed to interrupt intrinsic and extrinsic nerve pathways within the intestinal wall. Removal of a collar of longitudinal muscle with attached myenteric plexus from the circumference of a segment of small intestine resulted in the subsequent disappearance of 99.3% of neurites in the underlying circular muscle. The few surviving neurites in the deep muscular plexus and circular muscle disappeared completely from lesioned segments that were, in addition, extrinsically denervated surgically. These results indicate that the majority of nerve fibres in the deep muscular and circular muscle plexuses of the guinea-pig small intestine is intrinsic to the intestine and originates from nerve cell bodies located in the overlying myenteric plexus. At the light-microscopic level, nerve bundles were traced from the myenteric plexus to the circular muscle.  相似文献   

11.
The annelid body wall generally comprises an outer layer of circular muscle fibres and an inner layer of longitudinal muscle fibres as well as parapodial and chaetal muscles. An investigation of Dysponetuspygmaeus (Chrysopetalidae) with confocal laser scanning microscopy showed that circular muscles are entirely absent. Further studies indicate that this feature is characteristic for all Chrysopetalidae. A scrutiny of the literature showed a similar situation in many other polychaetes. This lack of circular muscle fibres may either be due to convergence or represent a plesiomorphic character. Since circular muscles are very likely important for burrowing forms but not necessary for animals which proceed by movements of their parapodial appendages or cilia, this problem is also related to the question of whether the ancestral polychaete was epi‐ or endobenthic.  相似文献   

12.
The structure of the polychaete muscular system is reviewed. The muscular system comprises the muscles of the body wall, the musculature of the parapodial complex and the muscle system of the dissepiments and mesenteries. Various types of organisation of the longitudinal and circular components of the muscular body wall are distinguished. In Opheliidae, Polygordiidae, Protodrilidae, Spionidae, Oweniidae, Aphroditidae, Acoetidae (=Polyodontidae), Polynoidae, Sigalonidae, Phyllodocidae, Nephtyidae, Pisionidae, and Nerillidae circular muscles are lacking. It is hypothesised that the absence of circular muscles represents the plesiomorphic state in Annelida. This view contradicts the widely accepted idea of an earthworm-like musculature of the body wall comprising an outer layer of circular and an inner layer of longitudinal fibres. A classification of the various types of parapodial muscle construction has been developed. Massive and less manoeuvrable parapodia composed of many components like those of Aphrodita are regarded to represent the plesiomorphic state in recent polychaetes. An analysis of the diversity of the muscular structure supports the hypothesis that the primary mode of life in polychaetes was epibenthic and the parapodial chaetae had a protective function.  相似文献   

13.
14.
The taxonomy of freshwater pulmonates (Hygrophila) has been in a fluid state warranting the search for new morphological criteria that may show congruence with molecular phylogenetic data. We examined the muscle arrangement in the penial complex (penis and penis sheath) of most major groups of freshwater pulmonates to explore to which extent the copulatory musculature can serve as a source of phylogenetic information for Hygrophila. The penises of Acroloxus lacustris (Acroloxidae), Radix auricularia (Lymnaeidae), and Physella acuta (Physidae) posses inner and outer layers of circular muscles and an intermediate layer of longitudinal muscles. The inner and outer muscle layers in the penis of Biomphalaria glabrata consist of circular muscles, but this species has two intermediate longitudinal layers separated by a lacunar space, which is crossed by radial and transverse fibers. The muscular wall of the penis of Planorbella duryi is composed of transverse and longitudinal fibers, with circular muscles as the outer layer. In Planorbidae, the penial musculature consists of inner and outer layers of longitudinal muscles and an intermediate layer of radial muscles. The penis sheath shows more variation in muscle patterns: its muscular wall has two layers in A. lacustris, P. acuta, and P. duryi, three layers in R. auricularia and Planorbinae and four layers in B. glabrata. To trace the evolution of the penial musculature, we mapped the muscle characters on a molecular phylogeny constructed from the concatenated 18S and mtCOI data set. The most convincing synapomorphies were found for Planorbinae (inner and outer penis layers of longitudinal muscles, three-layered wall of the penis sheath). A larger clade coinciding with Planorbidae is defined by the presence of radial muscles and two longitudinal layers in the penis. The comparative analysis of the penial musculature appears to be a promising tool in unraveling the phylogeny of Hygrophila.  相似文献   

15.
Summary The smooth muscle of rabbit portal vein was studied by electron microscopy with particular emphasis on the mechanical linkage between the muscle cells and on the distribution of connective tissue.The media of this vein is composed of inner circular and outer longitudinal muscle layers which are orientated almost perpendicularly to each other. The muscle of the inner circular layer shows very irregular contours with much branching and anastomosing of the cytoplasmic processes, which often make membrane contacts with neighbouring cells to form an extensive network of cytoplasmic processes. The muscle cells of the outer longitudinal layer are arranged in densely packed bundles and are spindle-shaped, with no branching processes. Opposing dense areas from neighbouring cells, with variable gap distances (30–100 nm) and close membrane contacts (intermediate junctions) with a gap of 11 nm were observed in both circular and longitudinal muscle layers.In the terminal regions of muscle cells in both circular and longitudinal layers a specialized anchoring structure was present which was closely related to extracellular elastic tissue. Muscle cells in the longitudinal layer showed the most elaborate structure, the tapering end of the muscle cell showing a honeycomb-like structure penetrated by columns of connective tissue compounds. The functional implications of these structures are discussed.  相似文献   

16.
胚胎小肠Cajal细胞的发育研究   总被引:5,自引:1,他引:4  
目的研究人胚胎小肠cajal细胞的发育变化规律。方法采用全层铺片结合切片的免疫细胞化学技术。结果Cajal细胞呈酪氨酸激酶受体(Kit)和波形蛋白(vinlentin)免疫反应阳性。在胚胎发育早期,cajal细胞较少,为单层,稀疏分布于肌间神经丛周围,细胞为梭形,可见两个短而小的突起,未见分支;随着胎龄的增加,Cajal细胞数量增多,胞体增大,突起伸长,并出现分支。此时,肌间神经丛周围的Cajal细胞出现两层,其长轴彼此垂直,分别平行于环行肌和纵行肌。与此同时环行肌层内亦可见少许Cajal细胞;出生前,肌间神经丛部位的Cajal细胞接近成熟,两层细胞的突起进一步增多、伸长,彼此间形成与成人相似的完整的细胞网络。此时深肌丛附近亦可见少量Cajal细胞。结论人的小肠Cajal细胞发育有一定的时间顺序,即肌间神经丛周围最先出现,肌内次之,深肌丛较晚,出生前肌间神经丛周围的Cajal细胞已经接近成熟。这种发育演变若发生异常,可能导致某些胃肠动力障碍性疾病。  相似文献   

17.
Some ultrastructural features of the muscular coat of human small intestine   总被引:3,自引:0,他引:3  
The muscular coat of human small intestine is constituted by a 'special' layer, by the main component of the circular layer, by the region between the circular and the longitudinal layers and by the longitudinal layer. The 'special' layer is made up of the innermost 4-6 rows of muscle cells of the circular layer and is separated from the main component of the circular layer by a space in which an abundant connective tissue and numerous nerve fibers rich in nerve endings are located. Cells identified as interstitial cells of Cajal are located inside the 'special' layer, the space between it and the main component of the circular layer and in the region between the circular and the longitudinal layers. In this region small bundles of obliquely orientated muscle cells, apparently bridging the circular to the longitudinal layer, are found.  相似文献   

18.
We have carried out a detailed ultrastructural study of the interstitial cells near the myenteric plexus of the canine colon and defined the structural characteristics which distinguish them from other resident non-neural cells. We have also examined the interconnections of these interstitial cells with nerves, the longitudinal muscle, and the circular muscle. In addition, we sought connections between interstitial cells of the myenteric plexus and those described earlier at the inner border of the circular muscle in proximal and distal colon. The interstitial cells of the myenteric plexus were structurally distinctive, and made gap junctions with one another and occasionally with smooth muscle. There seemed to be two subsets of these interstitial cells, one associated with the longitudinal muscle and the other with the circular muscle. Cells of both subsets were often close (less than or equal to 20 nm) to nerve profiles. The interstitial cells near the longitudinal muscle layer penetrated slightly into the muscle layer, but those near the circular muscle did not and neither set contacted the other. Moreover, interstitial cells of Cajal located near the myenteric plexus were never observed to contact those at the inner border of circular muscle. The interstitial cells of Cajal at the canine colon myenteric plexus are structurally organized to provide independent pacemaking activities for the longitudinal and adjacent circular muscle. Their dense innervation suggests that they mediate neural modulation of intestinal pacemaker activities. Moreover, they lack direct contacts with the interstitial cell network at the inner border of circular muscle, which is essential for the primary pacemaking activity of circular muscle. The structural organization of interstitial cells in canine colon is consistent with their proposed role in pacemaking activity of the two muscle layers.  相似文献   

19.
SUMMARY Aspects of muscle development are still widely neglected in studies on invertebrate ontogeny, which is probably at least partly due to the inherent complexity of animal myoanatomical bodyplans. This has resulted in significant gaps in our understanding of the evolutionary and ontogenetic origin of this crucial mesoderm-derived organ system, particularly in indirect developing representatives of the Lophotrochozoa. Here, we document the temporal and spatial patterns of muscle formation and cell proliferation in the polychaete Sabellaria alveolata during planktotrophic larval development in order to assess the presumed generation of muscle units and segments from a posterior growth zone. In addition, we address the question whether the three primary segments differ in their mode of myogenesis from the subsequently forming segments. We found that in the first three segments the ventral transverse muscles differentiate from anterior to posterior, whereas the ventral oblique muscles develop simultaneously. Hence, subsequent and simultaneous developmental processes of specific muscle groups are possibly regulated in different ways, thus emphasizing the plasticity of the formation of metamerically arranged organ systems in polychaetes. The occurrence of three clusters of proliferating cells in the trunk region of the metatrochophore indicates synchronous subdivision of the larval mesoderm in the first three segments. Assuming a polychaete-like ancestor at the base of the annelid tree, comparative analysis suggests that the bodywall of the last common annelid ancestor might have been devoid of circular muscles and consisted of four separate longitudinal muscle strands that develop from anterior to posterior.  相似文献   

20.
Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c-kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18beta-Glycyrrhetinic acid (10, 30, and 100 microM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 microM of (40)Gap27, (43)Gap26, (37,43)Gap27) all failed to abolish neurotransmission. 18beta-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca(2+) channels in smooth muscle, but octanol or gap peptides did not. 18beta-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after N(G)-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号