首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Numerous studies of variation in mtDNA in Amerindian populations established that four haplogroups are present throughout both North and South America. These four haplogroups (A, B, C, and D) and perhaps a fifth (X) in North America are postulated to be present in the initial founding migration to the Americas. Furthermore, studies of ancient mtDNA in North America suggested long-term regional continuity of the frequencies of these founding haplogroups. Present-day tribal groups possess high frequencies of private mtDNA haplotypes (variants within the major haplogroups), consistent with early establishment of local isolation of regional populations. Clearly these patterns have implications for the mode of colonization of the hemisphere. Recently, the earlier consensus among archaeologists for an initial colonization by Clovis hunters arriving through an ice-free corridor and expanding in a "blitzkrieg " wave was shown to be inconsistent with extensive genetic variability in Native Americans; a coastal migration route avoids this problem. The present paper demonstrates through a computer simulation model how colonization along coasts and rivers could have rapidly spread the founding lineages widely through North America.  相似文献   

2.
The traditional view of American colonization during the late Pleistocene has largely been conditioned on early conceptions of the timing and extent of continental glaciations and the age and distribution of archeological sites. A review of newer, high resolution genetic data, both from modern populations and ancient DNA samples, along with the emergence of several early archeological sites in both North and South America, and reconsiderations of the glacial dynamics in North America indicate that some aspects of the traditional view need reconsideration. It seems obvious from archeological data that a preglacial occupation of the Americas needs to be closely examined. Accumulating molecular genetic data raises new questions about the timing and population size of the initial colonization(s), while a closer examination of glacial models suggests that a number of routes into the Americas may have been available until fairly late in the last glacial cycle.  相似文献   

3.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

4.
Recent studies have concluded that the global pattern of neutral genetic diversity in humans reflects a series of founder effects and population movements associated with our recent expansion out of Africa. In contrast, regional studies tend to emphasize the significance of more complex patterns of colonization, gene flow, and secondary population movements in shaping patterns of diversity. Our objective in this study is to examine how founder effects, gene flow, and European admixture have molded patterns of neutral genetic diversity in the Americas. Our strategy is to test the fit of a serial founder effects process to the pattern of neutral autosomal genetic variation and to examine the contribution of gene flow and European admixture to departures from fit. The genetic data consist of 678 autosomal microsatellite loci assayed by Wang and colleagues in 530 individuals in 29 widely distributed Native American populations. We find that previous evidence for serial founder effects in the Americas may be driven in part by high levels of European admixture in northern North America, intermediate levels in Central America, and low levels in eastern South America. Geographically patterned admixture may also account for previously reported genetic differences between Andean and Amazonian groups. Though admixture has obscured the precise details of precontact evolutionary processes, we find that genetic diversity is still largely hierarchically structured and that gene flow between neighboring groups has had surprisingly little impact on macrogeographic patterns of genetic diversity in the Americas.  相似文献   

5.
Y He  WR Wang  R Li  S Wang  L Jin 《PloS one》2012,7(9):e44788
An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America.  相似文献   

6.
Although empirical issues surround the when, how, and who questions of New World colonization, much of current debate hinges on theoretical problems because it has become clear that our understanding of New World colonization is not resolute. 1 In fact, the central issues of debate have remained essentially unchanged for the last eighty years. The now classic and probably incorrect story of New World colonization begins in Late Pleistocene Siberia, with small a population of foragers migrating across Beringia (~13,500 calendar years before present (CYBP) (Box 1) through an ice‐free corridor and traveling through the interior of North America. High mobility and rapid population growth spurred southward expansion into increasingly distant unoccupied regions, culminating in the settlement of the Southern Cone of South America. Armed with the skills and weapons needed to maintain a megafauna‐based subsistence strategy, early colonists necessarily had the adaptive flexibility to colonize a diverse array of Pleistocene landscapes. For a time, this scenario seemed well substantiated. The earliest sites in South America were younger than their northern counterparts, fluted artifacts were found across the Americas within a brief temporal window, and projectile points capable of wounding elephant‐sized prey were commonly found in association with proboscidean remains. The Bering Land Bridge connecting Asia to Alaska and an ice‐free corridor providing passage between the Pleistocene ice masses of Canada seemed to provide a clear route of entry for Clovis colonists. However, recent archeological, paleoenvironmental, biological, and theoretical work largely questions the plausibility of these events.  相似文献   

7.
After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ~15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.  相似文献   

8.
Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.  相似文献   

9.
The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species’ molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America.  相似文献   

10.
The initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations. In this study, we analyze genomic data at 475,109 single-nucleotide polymorphisms sampled in indigenous peoples of the Pacific Northwest in British Columbia and Southeast Alaska, populations with a well-documented history of contact with European and Asian traders, fishermen, and contract laborers. We find that the indigenous populations of the Pacific Northwest have higher gene diversity than Latin American indigenous populations. Among the Pacific Northwest populations, interior groups provide more evidence for East Asian admixture, whereas coastal groups have higher levels of European admixture. In contrast with many Latin American indigenous populations, the variance of admixture is high in each of the Pacific Northwest indigenous populations, as expected for recent and ongoing admixture processes. The results reveal some similarities but notable differences between admixture patterns in the Pacific Northwest and those in Latin America, contributing to a more detailed understanding of the genomic consequences of European colonization events throughout the Americas.  相似文献   

11.
In this work, the process of colonization of North and South America by the species Drosophila subobscura has been studied by analyzing the variability of lethal genes. The genetic structures of a Palearctic natural central population (Bordils, Spain) and a colonizer population from America (Gilroy, California) have been compared. The frequencies of lethal chromosomes and their allelism are 29.007% and 0.0069 in the first population and 14.414% and 0.0526 in the American population. A founder effect is detected after the computation of some population parameters (Ne, h, he and the lethal load). Furthermore, the allelism of lethal chromosomes has revealed a strong association between a lethal gene and the O5 inversion both in Gilroy and in the population of Puerto Montt (Chile). The interpopulation allelism shows that the O5 arrangement from the USA and Chile is the same, confirming that the colonizing processes of North and South America are correlated. The O5 arrangement can also be useful as a genetic marker to trace the origin of the colonization. The frequency of the O5 arrangement in the original population of the colonization could be used to estimate the number of colonizers. This population is still unknown, but taking the extreme values of the frequency of the O5 inversion in natural Palearctic populations (1–15%), the number of colonizers could vary between 9 and 149 individuals.  相似文献   

12.
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.  相似文献   

13.
Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the initial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic.  相似文献   

14.
The current model for peopling of the Americas involves divergence from an ancestral Asian population followed by a period of population isolation and genetic diversification in Beringia, and finally, a rapid expansion into and throughout the Americas. Studies in the 1970s sought to characterize the biological relationships between different indigenous populations and first proposed an occupation of Beringia. More recent studies using molecular genetic markers often neglect to reference early works that laid the groundwork for current colonization models. We address this matter, and briefly summarize the literature and technological advances that contributed to our current understanding of the peopling of the Americas. Furthermore, we argue that describing the process of peopling of the Americas as “migrations from Asia” minimizes the significant genetic diversification that occurred outside of Asia, and offends indigenous Americans by discounting their origin narratives and land rights. Rather than referring to the indigenous peoples of the Americas as “migrants” or “immigrants,” we recommend consistency in the language used to describe all post‐glacial expansions of people into Asia, Europe and the Americas.  相似文献   

15.
In 2013, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) was officially declared as present in Brazil and, after two years, the species was detected in the Caribbean and North America. Information on genetic features and accurate distribution of pests is the basis for agricultural protection policies. Furthermore, such knowledge is imperative to develop control strategies, understand the geographical range, and genetic patterns of this species in the Americas. Here, we carried out the widest sampling of H. armigera in the South American continent and Puerto Rico, after we estimated the diversity, demographic parameters, and genetic structure. The Internal Transcribed Spacer 1 (ITS1) nuclear marker was used to investigate the presence of putative hybrids between H. armigera and H. zea, and they were observed at a frequency of 1.5%. An ABC analysis, based in COI gene fragment, suggested Europe as the origin of South America specimens of H. armigeraand following a movement northward through the Caribbean. Three mtDNA genes and three nDNA markers revealed high genetic diversity distributed without the defined population structure of H. armigera in South America. Most of the genetic variation is within populations with a multidirectional expansion of H. armigera among morphoclimatic regions. High genetic diversity, rapid population expansion, and hybridization have implications for pest management since they suggest that adaptive alleles are spread through wide areas in South America that favor rapid local adaptation of H. armigera to new and disturbed environments (e.g., in agricultural areas).  相似文献   

16.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

17.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

18.
Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests.  相似文献   

19.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

20.
Phylogeographic trends in Batrachospermum macrosporum Mont. were investigated using the mitochondrial intergenic spacer between the cytochrome oxidase subunit 2 and 3 genes (cox2‐3). A total of 11 stream segments were sampled with seven in the coastal plain of North America and four in tropical areas of South America. Fifteen thalli were sampled from seven streams, 14 thalli from two streams, and eight thalli from two streams. There were 16 haplotypes detected using 149 individuals. Of the eight haplotypes from locations in North America, all were 334 base pairs (bp) in length, and of those from South America, five were 344 bp, and three were 348 bp. Two individual networks were produced: one for the haplotypes from North America and another for those from South America, and these could not be joined due to the large number of base pair differences. This split between haplotypes from North and South America was confirmed with sequence data of the rbcL gene. There was very little genetic variation among the haplotypes from the North American locations, leading us to hypothesize that these are fairly recent colonization events along the coastal plain. In contrast, there was high variation among haplotypes from South America, and it would appear that the Amazon serves as a center of diversity. We detected considerable variation in haplotypes among streams, but frequently, a single haplotype in an individual stream segment, which is consistent with data from previous studies of other batrachospermalean taxa, may suggest a single colonization event per stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号