首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction

Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid.

Results

A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress.

Conclusion

This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress.  相似文献   

2.
Gene Expression Analysis of Cold and Freeze Stress in Baker's Yeast   总被引:2,自引:1,他引:2       下载免费PDF全文
We used mRNA differential display to assess yeast gene expression under cold or freeze shock stress conditions. We found both up- and down-regulation of genes, although repression was more common. We identified and sequenced several cold-induced genes exhibiting the largest differences. We confirmed, by Northern blotting, the specificity of the response for TPI1, which encodes triose-phosphate isomerase; ERG10, the gene for acetoacetyl coenzyme A thiolase; and IMH1, which encodes a protein implicated in protein transport. These genes also were induced under other stress conditions, suggesting that this cold response is mediated by a general stress mechanism. We determined the physiological significance of the cold-induced expression change of these genes in two baker's yeast strains with different sensitivities to freeze stress. The mRNA level of TPI1 and ERG10 genes was higher in freeze-stressed than in control samples of the tolerant strain. In contrast, both genes were repressed in frozen cells of the sensitive strain. Next, we examined the effects of ERG10 overexpression on cold and freeze-thaw tolerance. Growth of wild-type cells at 10°C was not affected by high ERG10 expression. However, YEpERG10 transformant cells exhibited increased freezing tolerance. Consistent with this, cells of an erg10 mutant strain showed a clear phenotype of cold and freeze sensitivity. These results give support to the idea that a cause-and-effect relationship between differentially expressed genes and cryoresistance exists in Saccharomyces cerevisiae and open up the possibility of design strategies to improve the freeze tolerance of baker's yeast.  相似文献   

3.
Water-deficit stress tolerance is a complex trait, and water deficit results in various physiological and chemical changes in maize (Zea mays L.) and exacerbates pre-harvest aflatoxin contamination. The objective of this study was to characterize the variations in morphology, physiology, and gene expression in two contrasting inbred lines, Lo964 and Lo1016, in order to understand the differences in response to water-deficit stress. The results revealed that Lo964 was less sensitive to water-deficit stress, and had a strong lateral root system and a higher root/shoot ratio in comparison to Lo1016. In response to water-deficit stress by comparing stressed versus well-watered conditions, abscisic acid syntheses were increased in leaves, roots, and kernels of both Lo964 and Lo1016, but by different magnitudes. Indole-3-acetic acid (IAA) was undetectable in the leaves and roots of either genotype regardless of treatments, but increases of 58% and 8% in IAA concentration were observed in 20 DAP kernels, in response to water-deficit stress, respectively. The expression of the MIPS was up-regulated 7-fold in leaf tissues of Lo964 compared to Lo1016 at watered conditions, but decreased significantly to similar levels in both genotypes at water-deficit conditions. ZmPR10 and ZmFer1 expressions tended to up-regulate although ZmPR10 was expressed higher in root tissue while ZmFer1 was expressed higher in leaf tissue. Further study is needed to confirm if Lo964 has reduced aflatoxin contamination associated with the drought tolerance in the field in order to utilize the resistant trait in breeding.  相似文献   

4.
5.
水稻苹果酸酶(NADP-ME)是多基因家族,由3个胞质型NADP-ME和1个质体型NADP-ME构成。本研究针对水稻胞质型成员(命名为NADP-ME3)(NM001061367)进行初步的功能解析。克隆获得的NADP-ME3基因的cDNA序列全长为2240bp,其中5’非翻译区为151bp,3’非翻译区为376bp,开放读码框(ORF)长1713bp,编码570个氨基酸。为研究NADP-ME3在逆境胁迫下的表达量变化,Northern blot检测结果显示,在NaCl、NaHCO3和PEG胁迫条件下,NADP-ME3随胁迫处理时间的不同表达量呈现不同程度的变化,推断NADP-ME3可能与非生物胁迫有应答关系,将NADP-ME3转入拟南芥中并通过观察转基因拟南芥在非生物胁迫下表型变化,发现NADP-ME3能够在一定程度上提高植物对非生物胁迫的耐受性。  相似文献   

6.
Gene Expression Profiling of Plants under Salt Stress   总被引:1,自引:0,他引:1  
  相似文献   

7.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

8.
9.
10.
Rice is a very important food staple that feeds more than half the world''s population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS). In this study, methyl viologen (MV) as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica) seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica). Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs). These CIPs were analyzed by gene ontology (GO) and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs), P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS). Further insertion/deletion (InDel) and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.  相似文献   

11.
Defects in mitochondrial electron transport chain (ETC) function have been implicated in a number of neurodegenerative disorders, cancer, and aging. Mitochondrial complex I (NADH dehydrogenase) is the largest and most complicated enzyme of the ETC with 45 subunits originating from two separate genomes. The biogenesis of complex I is an intricate process that requires multiple steps, subassemblies, and assembly factors. Here, we report the generation and characterization of a Drosophila model of complex I assembly factor deficiency. We show that CG7598 (dCIA30), the Drosophila homolog of human complex I assembly factor Ndufaf1, is necessary for proper complex I assembly. Reduced expression of dCIA30 results in the loss of the complex I holoenzyme band in blue-native polyacrylamide gel electrophoresis and loss of NADH:ubiquinone oxidoreductase activity in isolated mitochondria. The complex I assembly defect, caused by mutation or RNAi of dCIA30, has repercussions both during development and adulthood in Drosophila, including developmental arrest at the pupal stage and reduced stress resistance during adulthood. Expression of the single-subunit yeast alternative NADH dehydrogenase, Ndi1, can partially or wholly rescue phenotypes associated with the complex I assembly defect. Our work shows that CG7598/dCIA30 is a functional homolog of Ndufaf1 and adds to the accumulating evidence that transgenic NDI1 expression is a viable therapy for disorders arising from complex I deficiency.  相似文献   

12.
差异显示技术研究NaHCO3胁迫下星星草基因表达   总被引:3,自引:0,他引:3  
用差异显示技术研究NaHCO3胁迫下星星草(Puccinellia tenuiflora)基因的表达.经Reverse Northern检测,获得了7个差异表达的基因片段.其中,6个为胁迫后诱导表达,1个为胁迫后抑制表达.序列同源性分析表明,胁迫诱导表达的6个基因片段中,1个与钙依赖性蛋白激酶(CDPKs)基因同源性较高,其余5个可能为新序列,胁迫后抑制表达的基因片段与假定的adaptor蛋白基因同源性较高.本研究为进一步研究星星草的抗盐机理奠定了基础.  相似文献   

13.
差异显示技术研究NaHCO_3胁迫下星星草基因表达   总被引:3,自引:0,他引:3  
用差异显示技术研究NaHCO3胁迫下星星草(Puccinelliatenuiflora)基因的表达。经ReverseNorth-ern检测,获得了7个差异表达的基因片段。其中,6个为胁迫后诱导表达,1个为胁迫后抑制表达。序列同源性分析表明,胁迫诱导表达的6个基因片段中,1个与钙依赖性蛋白激酶(CDPKs)基因同源性较高,其余5个可能为新序列,胁迫后抑制表达的基因片段与假定的adaptor蛋白基因同源性较高。本研究为进一步研究星星草的抗盐机理奠定了基础。  相似文献   

14.
Zinc deficiency causes oxidative stress in many organisms including the yeast Saccharomyces cerevisiae. Previous studies of this yeast indicated that the Tsa1 peroxiredoxin is required for optimal growth in low zinc because of its role in degrading H2O2. In this report, we assessed the importance of other antioxidant genes to zinc-limited growth. Our results indicated that the cytosolic superoxide dismutase Sod1 is also critical for growth under zinc-limiting conditions. We also found that Ccs1, the copper-delivering chaperone required for Sod1 activity is essential for optimal zinc-limited growth. To our knowledge, this is the first demonstration of the important roles these proteins play under this condition. It has been proposed previously that a loss of Sod1 activity due to inefficient metallation is one source of reactive oxygen species (ROS) under zinc-limiting conditions. Consistent with this hypothesis, we found that both the level and activity of Sod1 is diminished in zinc-deficient cells. However, under conditions in which Sod1 was overexpressed in zinc-limited cells and activity was restored, we observed no decrease in ROS levels. Thus, these data indicate that while Sod1 activity is critical for low zinc growth, diminished Sod1 activity is not a major source of the elevated ROS observed under these conditions.  相似文献   

15.
运用基因芯片技术研究了NaHCO3胁迫下柽柳(Tamarix androssowii)基因的表达.将Cy5和Cy3两种荧光染料分别标记在NaHCO3处理和对照的柽柳cDNA上,将两种荧光探针混合,与载有柽柳基因的高密度芯片进行杂交并用芯片扫描系统进行扫描,通过Cy5与Cy3信号强度比值的计算研究基因的差异表达.共获得了89个差异表达的基因,其中,27个下调表达,62个上调表达.BlastX分析表明这些基因按功能可以分为光合作用、活性氧清除、渗透调节、信号传导与表达调控、代谢、发育相关、核糖体蛋白、蛋白质的分解与再生、转运类蛋白、水通道蛋白等几大类别.同时,发现了一些与盐胁迫相关的功能未知基因或未有任何功能信息的基因,这些基因可能在柽柳抗盐过程中具有重要作用.揭示了柽柳的抗盐胁迫涉及的几种重要途径,并获得了NaHCO3胁迫前后柽柳基因表达谱.  相似文献   

16.
17.
胞红蛋白(CGB)是一种新发现的分布于胞浆与胞核的携氧珠蛋白。为探讨CGB在体内的相互作用蛋白,从而促进对其分子调控网络的认识,根据CGB基因的开放阅读框架设计并合成PCR引物,从人胎肝cDNA文库中扩增得到该基因编码区.测序分析正确后将其定向克隆到酵母表达载体pGBKT7中,构建获得CGB的酵母表达载体pGBKT7-CGB,并在酵母菌AH109中表达。提取酵母总蛋白并利用标签蛋白(myc)的抗体进行免疫印迹检测。结果表明所构建的CGB酵母表达载体能够在酵母中高效表达,可用于后续的酵母双杂交文库的筛选工作。  相似文献   

18.
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein – ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD.  相似文献   

19.
20.
菘蓝IiLEA基因的克隆及胁迫表达分析   总被引:1,自引:0,他引:1  
胚胎发育晚期丰富蛋白(LEA蛋白),是指胚胎发育后期种子中大量积累的一系列蛋白质,大量研究表明这些蛋白质的积累与渗透胁迫耐受性密切相关.该实验以250 mmol/L NaCl溶液处理9 h的菘蓝幼苗为材料,经RT-PCR方法扩增得到LEA基因,命名为IiLEA.经测序确认该基因含有648 bp的开放阅读框,编码由215个氨基酸组成的亲水性蛋白质.对培养30 d的菘蓝无菌幼苗进行自然干旱处理和盐胁迫处理,Northern杂交结果显示,正常生长条件下,IiLEA基因在菘蓝幼苗体内不表达,随着胁迫时间的延长其表达量逐渐增加,到9 h时表达量达到峰值,干旱处理和盐处理有相似结果,表明该基因可能受逆境胁迫诱导表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号