首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

X-chromosome inactivation (XCI) results in the silencing of most genes on one X chromosome, yielding mono-allelic expression in individual cells. However, random XCI results in expression of both alleles in most females. Allelic imbalances have been used genome-wide to detect mono-allelically expressed genes. Analysis of X-linked allelic imbalance in females with skewed XCI offers the opportunity to identify genes that escape XCI with bi-allelic expression in contrast to those with mono-allelic expression and which are therefore subject to XCI.

Results

We determine XCI status for 409 genes, all of which have at least five informative females in our dataset. The majority of genes are subject to XCI and genes that escape from XCI show a continuum of expression from the inactive X. Inactive X expression corresponds to differences in the level of histone modification detected by allelic imbalance after chromatin immunoprecipitation. Differences in XCI between populations and between cell lines derived from different tissues are observed.

Conclusions

We demonstrate that allelic imbalance can be used to determine an inactivation status for X-linked genes, even without completely non-random XCI. There is a range of expression from the inactive X. Genes escaping XCI, including those that do so in only a subset of females, cluster together, demonstrating that XCI and location on the X chromosome are related. In addition to revealing mechanisms involved in cis-gene regulation, determining which genes escape XCI can expand our understanding of the contributions of X-linked genes to sexual dimorphism.  相似文献   

2.
3.
4.
《Epigenetics》2013,8(7):452-456
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion (~15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, ~80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.  相似文献   

5.
Origin and evolution of X chromosome inactivation   总被引:1,自引:0,他引:1  
Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.  相似文献   

6.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

7.
Turner syndrome females (45,X) do not have mental retardation (MR), whereas some mosaic ring X Turner syndrome females, with 45,X/46,X,r(X), have severe MR. The MR is believed to be caused by a failure of X chromosome inactivation (XCI) of the small ring X chromosome, which leads to functional X disomy (FXD), To explore this hypothesis, we examined the proportion of FXD cells in the peripheral blood of four ring X Turner syndrome females with various levels of MR, using two newly developed XCI assays based on DNA methylation of X-linked genes. As a result, the two patients with extremely severe MR showed complete FXD patterns, whereas the remaining two patients with relatively milder MR showed partial FXD patterns. These results indicate that the proportion of FXD cells may be associated with the severity of MR in mosaic ring X Turner syndrome females, although this association should be confirmed by examining brain cells during development. One of the cases with severe MR and a complete FXD pattern neither lacked the XIST gene nor had uniparental X isodisomy, and we discuss the mechanism of the failure of XCI in this case.  相似文献   

8.
Dosage compensation for the mammalian X chromosome involves the silencing of one X chromosome to achieve equal X-linked gene expression between males and females. X chromosome inactivation (XCI) is controlled by a complex set of genetic elements located in a region known as the X chromosome inactivation center, and is regulated by a combination of genomic imprinting, cell lineage-dependent erasure of imprinting, an unidentified mechanism of X chromosome counting, an incompletely understood means of selection of one X chromosome for inactivation and developmentally regulated changes in X chromosome chromatin. A detailed understanding of when and how these components of XCI occur is essential for elucidating the operative mechanisms. A model accounting for early events related to XCI, including observations in uniparental and aneuploid embryos, is presented.  相似文献   

9.
10.
11.
Alport syndrome (AS) and hereditary nephropathy (HN) are glomerular nephropathies caused by mutations in the genes encoding the type IV collagens. In a mixed breed of dog, termed Navasota (NAV) dogs, X-linked hereditary nephropathy (XLHN) is caused by a 10-bp deletion in exon 9 of COL4A5. Males harboring this mutation succumb to end-stage renal disease before 18 months of age. In contrast, female carriers of this disease survive much longer, most have a normal life-span, and vary in disease progression as compared with XLHN-affected males. X chromosome inactivation (XCI) patterns have been studied in human X-linked AS carriers and some have been shown to have a high degree of skewed XCI. However, similar studies have never been reported in an animal model of this disease. Therefore, patterns of XCI were examined in XLHN-carrier NAV dogs. The variation in XCI among the 26 XLHN-carrier and seven normal female NAV dogs studied was low and only three were found to preferentially inactivate one X chromosome, all of which were XLHN-carriers. The average skewedness among all dogs was 59% and 57% among the XLHN-carriers. No significant difference in XCI was found between the two groups (P = 0.477). It is clear from these data that genotype does not seem to have an effect on inactivation; the majority of these dogs have random patterns of XCI. Highly skewed X chromosome inactivation also appears to be random, given that no difference was observed between the XLHN-carriers and normal females. Because of the apparent rarity of skewed XCI, these dogs may not be a suitable model for studying a potential correlation between this phenomenon and disease progression.  相似文献   

12.
Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.  相似文献   

13.
14.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

15.
Most females have random X-chromosome inactivation (XCI), defined as an equal likelihood for inactivation of the maternally- or paternally-derived X chromosome in each cell. Several X-linked disorders have been associated with a higher prevalence of non-random XCI patterns, but previous studies on XCI patterns in Aicardi syndrome were limited by small numbers and older methodologies, and have yielded conflicting results. We studied XCI patterns in DNA extracted from peripheral blood leukocytes of 35 girls with typical Aicardi syndrome (AIC) from 0.25 to 16.42 years of age, using the human androgen receptor assay. Data on 33 informative samples showed non-random XCI in 11 (33%), defined as a >80:20% skewed ratio of one versus the other X chromosome being active. In six (18%) of these, there was a >95:5% extremely skewed ratio of one versus the other X chromosome being active. XCI patterns on maternal samples were not excessively skewed. The prevalence of non-random XCI in Aicardi syndrome is significantly different from that in the general population (p < 0.0001) and provides additional support for the hypothesis that Aicardi syndrome is an X-linked disorder. We also investigated the correlation between X-inactivation patterns and clinical severity and found that non-random XCI is associated with a high neurological composite severity score. Conversely, a statistically significant association was found between random XCI and the skeletal composite score. Correlations between X-inactivation patterns and individual features were made and we found a significant association between vertebral anomalies and random XCI.  相似文献   

16.
17.
A model is proposed for the evolution of X-chromosome inactivation (XCI) in which natural selection initially favors the silencing of paternally derived alleles of X-linked demand inhibitors. The compensatory upregulation of maternally derived alleles establishes a requirement for monoallelic expression in females. For this reason, XCI is self-reinforcing once established. However, inactivation of a particular X chromosome is not. Random XCI (rXCI) is favored over paternal XCI because rXCI reduces the costs of functional hemizygosity in females. Once present, rXCI favors the evolution of locus-by-locus imprinting of X-linked loci, which creates an evolutionary dynamic in which different chromosomes compete to remain active.  相似文献   

18.
19.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号