首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible involvement of membrane-bound calcium in the mechanism of action of leukotriene B4 was examined using the fluorescent chelate probe, chlortetracycline. Leukotriene B4 was found to cause a rapid release of membrane-bound calcium at physiologically relevant concentrations. This effect of leukotriene B4 is stereospecific and its magnitude is decreased upon the transformation of leukotriene B4 into its omega-hydroxy and omega-carboxy metabolites. The pool of calcium affected by leukotriene B4 appears to be the same as that released by other chemotactic factors such as formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Similarly, preincubation with f-Met-Leu-Phe results in a decreased responsiveness of the cells to the addition of leukotriene B4. These results extend further the analogy between the mechanism of action of peptidic and lipid chemotactic factors, and emphasize the central role of the intracellular redistribution of calcium, as inferred and monitored by chlortetracycline fluorescence and steady-state isotopic flux studies, in neutrophil activation.  相似文献   

2.
Chlorotetracycline has been used in neutrophils and other cells as probe of the state of membrane-bound calcium. We report here that human neutrophils treated with chlorotetracycline response to soluble secretagogues by a prompt decrease in chlorotetracycline fluorescence. This response was observed within 2-5 s, making it one of the most immediate reactions in neutrophils to stimulation, and was obtained with three secretagogues studied: a chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine, a tumor promotor (phorbol myristate acetate) and a lectin (concanavalin A). The responses of neutrophils to the three stimuli differed both quantitatively and qualitatively. The calcium EGTA, did not effect the onset of the decrease in chlorotetracycline fluorescence, suggesting that the probe was measuring changes in intracellular calcium pools. The intracellular calcium antagonists, TMb-8, W-7 and trifluoperazine, did not block, but actually augmented, the fluorescence response. All four of these calcium antagonists blocked the recovery of chlorotetracycline fluorescence which was usually observed several minutes after stimulation with N-formyl-methionyl-leucyl-phenylalanine. This suggests that recovery was dependent upon both extracellular calcium and active calmodulin. The results are consistent with the hypothesis that changes in chlorotetracycline fluorescence reflect changes in a pool of membrane-bound 'trigger calcium', the release of which is an essential first step in stimulus-response coupling in human neutrophils.  相似文献   

3.
Summary Changes in the fluorescence intensity of the dye 3-3 dipentyloxacarbocyanine were measured in suspensions of purified human peripheral blood polymorphonuclear leukocytes (PMNs) during exposure to the chemotactic factors N-formyl-methionylleucyl-phenylalanine (f-met-leu-phe) and partially purified C5a. Incubation of PMNs with dye resulted in a stable fluorescence reflecting the resting membrane potential of the cell. Exposure of PMNs to dye did not affect stimulated chemotaxis or secretion. The mechanism of cell-associated dye fluorescence involved solvent effects from partitioning of the dye between the aqueous incubation medium and the cell and not dye aggregation, Chemotactically active concentrations of f-met-leu-phe (5×10–9 m or greater) produced a biphasic response characterized as a decrease followed by an increase in fluorescence. No fluorescence response was seen in lysed PMNs, and no response was elicited by an inhibitor of f-met-leu-phe binding (carbobenzoxy-phenylalanyl-methionine). The ability of several other synthetic peptides to elicit a fluorescence response corresponded to their effectiveness as chemotactic agents. Although the first component of the response suggested a depolarization, it was not influenced by variation in the external concentration of sodium, potassium, chloride, or calcium, and could not be characterized as a membrane potential change. The second component of the response, which was inhibited by both Mg2+ (10mm)-EGTA (10mm) and high external potassium, was compatible with a membrane hyperpolarization. The data indicate that chemotactic factors produce changes in dye fluorescence which can, at least in part, be attributed to a hyperpolarizing membrane potential change occurring across the plasma membrane.Presented in part at the 17th Annual Cell Biology Meeting.Cell Biol. 75:103a, 1977.  相似文献   

4.
Human neutrophils labeled with chlortetracycline (CTC), commonly used as a probe of membrane-bound calcium, release lysosomal enzymes and exhibit a rapid decrease in fluorescence when exposed to the chemotactic peptide fMet-Leu-Phe or the lectin Con A. This decrease has been attributed to the release of calcium from a membrane-associated "trigger pool." The nature of this putative pool has been further characterized by examining the effects of various inhibitors on the CTC fluorescence response and lysosomal enzyme release from stimulated neutrophils. These agents included inhibitors of glycolysis (2-deoxyglucose and iodoacetate), an uncoupler of oxidative- phosphorylation (KCN), and a sulfhydryl inhibitor (N-ethylmaleimide). Resting neutrophils labelled with CTC demonstrated an enhanced decay of baseline fluorescence when exposed to 2-deoxyglucose or iodoacetate. This suggested that the pool of membrane-bound calcium labelled by this probe was maintained by glycolytic metabolism. Furthermore, 2-deoxyglucose and iodoacetate inhibited both the stimulated decrease in CTC fluorescence and lysosomal enzyme release induced by fMet-Leu-Phe and Con A in a time-dependent manner. KCN did not inhibit either response to stimulation, but did retard the recovery of CTC fluorescence observed when fMet-Leu-Phe was used as the stimulus. High concentrations of N-ethylmaleimide (100 microM) completely inhibited both the CTC fluorescence response and lysosomal enzyme release almost immediately; low concentrations of N-ethylmaleimide (30 microM) inhibited lysosomal enzyme release in a time-dependent manner without significantly affecting changes in CTC fluorescence. These results are consistent with the hypothesis that CTC serves as a probe of membrane-bound "trigger" calcium, the release of which is dependent upon intact glycolysis and is a requirement for lysosomal enzyme release.  相似文献   

5.
Polymorphonuclear leukocytes (PMNs) from human neonates respond less efficiently to chemotactic factor stimulation than do PMNs from adults. The biologic mechanisms underlying this developmental process are poorly understood. In previous studies, we have found that pentoxifylline, an agent report to enhance membrane deformability, increased the chemotactic response of neonatal PMNs. In the present studies, we have examined the effect of pentoxifylline on cell surface mobility and membrane fluidity by assessing fluorescent concanavalin A (Con A) capping and fluorescent polarization (FP). Baseline Con A capping was lower in the PMNs of neonates when compared to PMNs from adult controls. Colchicine, which increases capping by disrupting microtubules, exaggerated the differences between the adult and neonatal PMNs. Following exposure of neonatal PMNs to pentoxifylline, colchicine enhanced Con A capping to levels equivalent to those of colchicine-treated PMNs from adults. Employing a fluorescence polarization (FP) assay, we found the fluid state of the membrane of PMNs from neonates was significantly less than that of adult controls. Pentoxifylline alone significantly increased the fluidity of the cell membranes of neonatal PMNs while decreasing elevated basal levels of F-actin in the cell. These data suggest an intrinsic cytoskeletal difference in the PMNs of neonates that may be responsive to pharmacologic manipulation.  相似文献   

6.
Several observations indicate that the triggering event for receptor-mediated actin polymerization takes place in or close to the plasma membrane. Stimulation of human neutrophils with the chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe) causes rapid and transient changes in both chlorotetracycline (CTC) fluorescence and the cellular content of filamentous actin (F-actin), thus suggesting a regulatory role for membrane-bound calcium in actin polymerization. In the present study, tetracaine, a proposed antagonist to membrane-bound calcium, totally inhibited the rebinding of the membrane calcium released by fMet-Leu-Phe. This was accompanied by a magnified and sustained increase in the cellular content of F-actin. In agreement, N-ethylmaleimide, an inhibitor of motile functions, completely abolished the fMet-Leu-Phe-triggered changes in both CTC fluorescence and F-actin content and rapidly reversed the responses when added after the peptide. The tumor promoter phorbol-12-myristate-13-acetate, caused only small changes in CTC fluorescence and F-actin content, and reduced a subsequent fMet-Leu-Phe-induced CTC response and actin polymerization. Inhibition of the breakdown of phosphatidylinositol 4,5-bisphosphate, by calcium depletion, had no significant effects on the fMet-Leu-Phe-induced CTC response and alterations in F-actin content, whereas pretreatment with pertussis toxin totally inhibited both these responses. Consequently, the strong correlation between changes in CTC fluorescence and F-actin content, found in this study, suggests a triggering or modulating role of membrane-associated calcium on actin polymerization in human neutrophils.  相似文献   

7.
Neutrophils are the predominant cells accumulated in the synovial fluid (SF) of rheumatoid arthritis (RA) patients. Accumulation of neutrophils may be regarded as a possible way by which neutrophils exert cytotoxic functions. The aim of the present study was to analyze the chemotactic response of neutrophils (PMNs) isolated from the peripheral blood or SF of patients with RA by performing the chemotaxis assay, in which N-formyl-methionyl-leucyl-phenylalanine (FMLP) was used as chemotactic agent. Our results showed that FMLP induced response of peripheral blood neutrophils from 12 patients with RA was similar with the response of 15 healthy controls. A decreased chemotactic response to FMLP was, however, observed in PMNs isolated from the SF of RA patients as comlipared with peripheral blood cells. Therefore, this defective chemotactic ability of neutrophil, was inversely correlated with the number of infiltrating cells in SF. These results indicate that chemotactic ability of neutrophils may be reduced after migration to the SF. Because PMNs chemotaxis in vivo has likely occurred in the presence of serum or SF, we tried to simulate the same conditions in vitro. Therefore, we analyzed the effect of serum or SF on the RA-PMNs chemotaxis. Heat-inactivated serum produced a marked reduction of chemotactic activity developed by PMNs isolated from patients with RA. Notably, a significant increase of chemotactic activity was observed when FMLP and serum stimuli were used together, as compared with the same stimuli used alone. The results suggested that complement activation might interfere with neutrophils chemotaxis. SF amplifies the chemotactic activity of PMNs isolated from peripheral blood of RA patients, but does not affect the chemotaxis developed by PMNs isolated from SF. The data might suggest that several components of SF (IL-8, leukotrien B4, thrombin, platelet-activating factor, etc.) could serve as a potent stimulus for recruitment of neutrophils from periphery into the RA joint. In conclusion, serum or SF components seem to contribute to chemotaxis of neutrophils and play a role in differential killing of PMNs and incidence of infection.  相似文献   

8.
Chemotactic factors stimulate the rate of locomotion of polymorphonuclear leukocytes (PMNs). To investigate the importance of cytoplasmic calcium we have examined the ability of the chemotactic peptide N-formylnorleucyl eucylphenalanine (FNLLP) to stimulate the locomotion of PMNs whose cytoplasmic calcium levels were reduced by incubation in EGTA or in EGTA plus the calcium ionophores, ionomycin or A23187. Locomotion was assayed by migration through micropore filters and by time-lapse videomicroscopy. Cells in EGTA exhibited similar or slightly reduced rates of locomotion compared to cells in Hanks' balanced salt solution (HBSS). The peptide dose dependence for the stimulation of locomotion was similar in medium containing calcium or EGTA. The presence of 1 microM ionophore plus EGTA had no effect on the stimulation of locomotion by peptide. The presence of ionophores (1 microM) plus external calcium inhibited locomotion.  相似文献   

9.
The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca(2+)](i)) changes and is chemotactic for human neutrophils (PMNs). Because interleukin-8 (IL-8) production is Ca(2+) dependent and can be induced by chemotactic stimuli, we have investigated the ability of TTN to induce IL-8 production in PMNs, as well as the signal transduction mechanisms involved. Our results show that TTN increases IL-8 release and IL-8 mRNA expression in a concentration- and time-dependent fashion, and these effects are prevented by the Ca(2+) chelator BAPTA-AM. TTN-induced [Ca(2+)](i) changes and IL-8 mRNA expression are sensitive to pertussis toxin, to the phospholipase C (PLC) inhibitor U73122 (but not to its inactive analogue U73343) and to the protein kinase C (PKC) inhibitor calphostin C. It is therefore suggested that TTN-induced IL-8 production in human PMNs results from a G protein-operated, PLC-activated [Ca(2+)](i) rise, and PKC contributes to this effect. These findings further support the possible role of TTN in the modulation of the inflammatory processes.  相似文献   

10.
Calcium dynamics in human neutrophils have been studied using Quin 2 fluorescence as a measure of free cytoplasmic calcium and chlortetracycline fluorescence as an indicator of membrane-bound calcium. The results show that 1) FMLP-induced increased cytoplasmic calcium likely comes from at least two different pools. Calcium is released from one only after a high affinity receptor interaction and from the second also after a lower affinity interaction. The initial increment in cytosolic calcium does not appear to originate in the pool(s) reflected by CTC fluorescence. 2) Cytochalasin B strikingly alters the FMLP effect on membrane associated calcium, inducing a marked “recovery” phase which could be a reflection of fusion of granule membranes with the plasma membrane. 3) PMA, at concentrations inducing extensive specific granule release (≤ 10 ng/ml) has no measurable direct effect on membrane-bound or cytosolic calcium. However, PMA inhibits a subsequent CTC fluorescence response to FMLP and following the ionophore, A23187, it induces a clear decrease in cytosolic calcium. These indirect effects may be explained in terms of PMA's activation of protein kinase C.  相似文献   

11.
《The Journal of cell biology》1985,101(5):1673-1679
We have found that hypertonic medium inhibited the receptor-mediated uptake of the chemotactic peptide N-formylnorleucylleucylphenylalanine without affecting fluid-phase endocytosis by polymorphonuclear leukocytes (PMNs). Morphological and biochemical evidence demonstrated that cells in hypertonic medium did not accumulate peptide in a receptor-mediated manner. However, the cells continued to form endosomes containing fluid-phase markers. Furthermore, the content of these endosomes was processed normally, i.e., both digested and intact material were released into the medium. The inhibition of receptor- mediated uptake was a function of the tonicity. Partial inhibition occurred in 0.45 and 0.6 osmolar medium and maximal inhibition occurred in 0.75 osmolar medium. The inhibition was independent of the solute used to increase the tonicity: sodium chloride, sucrose, and lactose all inhibited uptake to similar extents. Hypertonic medium had little effect on saturable peptide binding. However, it did prevent the clustering of surface molecules as indicated by the inhibition of capping of fluorescent concanavalin A. In addition, hypertonic medium prevented the peptide-stimulated increase in cytosolic calcium levels as measured by quin 2 fluorescence. The tonicity dependence of the inhibition of quin 2 fluorescence paralleled the inhibition of receptor- mediated uptake.  相似文献   

12.
Purified lipopolysaccharide (LPS) from Veillonella incubated in normal rabbit serum was tested for chemotactic activity on rabbit polymorphonuclear leukocytes (PMNs) in modified Boyden chambers. In doses above those giving optimal response (over-optimal dose), a decrease of the PMN migration activity was found. This decrease also correlated well with an increase in the migration inhibition of the PMNs as demonstrated with the capillary tube assay. The PMN chemotactic factor isolated from LPS-induced inflammatory exudate (LPS-CF) in rabbits, produced both a decrease in chemotactic response and a migration inhibition of PMNs in over-optimal doses. This inhibitory effect was not due to cytotoxicity, proved by the trypan blue exclusion test. Also, a reduced locomotion of PMNs first preincubated with chemoattractants and then reactivated, was shown when the same PMNs were restimulated to migration using the same chemoattractants. This was interpreted as a deactivation of the cells. A cross-deactivation was demonstrated between LPS-CF and casein. The results from the experiments reported show that the Boyden chamber may be used to disciminate directional chemotaxis and migration inhibition. It may also be concluded from the study that the reduced migration activity of PMNs at over-optimal doses of chemoattractants is not due to cytotoxicity, but most probably is caused by a deactivation of the cells.  相似文献   

13.
G M Omann  J M Harter 《Cytometry》1991,12(3):252-259
Flow cytometric methods were utilized to determine N-formylpeptide-induced cytosolic calcium levels in human polymorphonuclear leukocytes (PMNs) detected with the calcium indicator Fluo-3. Fluo-3 was readily loaded into PMNs as the acetoxymethyl ester. At room temperature Fluo-3 extrusion was minimal (less than 10%) over a 2 h time period. Flow cytometric histograms yielded symmetric distributions indicating homogeneous labelling of the cells. Stimulation of the cells with N-formyl-met-leu-phe (FMLP) caused homogeneous activation of all cells as indicated by a shift of the fluorescence distribution to higher fluorescence levels while still maintaining a symmetrical distribution. Resting values or FMLP-induced cytosolic calcium levels were similar in cells loaded over a 20-fold range of Fluo-3-acetoxymethyl ester. The effect of graded pertussis toxin (PT) treatment on the calcium response was determined by incubating cells with different concentrations of pertussis toxin for a time period that yielded a range of ADP ribosolation levels inside the cells. When these cells were activated with FMLP, the fluorescence histograms showed that pertussis toxin treatment resulted in a conversion of cells from responders to nonresponders. The responding cells responded with maximum calcium elevations similar to controls. This behavior may reflect heterogeneous insertion of the A-protomer of PT or a very sharp threshold of coupled G-proteins required to transduce the responses.  相似文献   

14.
J.-C. Li 《Theriogenology》2010,74(4):691-80
Although polymorphonuclear leukocytes (PMNs) are recruited into the uterine lumen to phagocytize sperm, factors controlling the phagocytotic ability of PMNs in cattle are not well documented. The objective was to determine the effects of blood serum, caffeine, and heparin on chemotaxis of PMNs for sperm and phagocytosis of sperm by PMNs in cows. Polymorphonuclear leukocytes were obtained (centrifugation) from a cow's peripheral blood. In Experiment 1, the chemotactic activity of PMNs increased (P < 0.01) when fresh serum was included in the medium (1226 cells/mm2 in serum vs. 1110 cells/mm2 in BSA), regardless of the presence of sperm, whereas heat-inactivated serum (1099 cells/mm2) did not affect their activity (P = 0.65). Phagocytosis of live and dead sperm by PMNs both increased (P < 0.01) in the presence of fresh serum (incidences of 54.5 and 48.0%, respectively), but stimulation was decreased (P < 0.01) by supplementation of the medium with ≥1 mM caffeine (20.6-30.3%). Serum-stimulated chemotactic activity of PMNs (1218 cells/mm2) was also decreased (P < 0.01) in the presence of caffeine (1090 cells/mm2). Furthermore, supplementation of PMNs with heparin in the presence of serum decreased (P < 0.01) both phagocytotic (from 43.8% to 21.5-31.7%) and chemotactic activities of PMNs (from 1124 to 1048-1108 cells/mm2). We inferred that opsonization in the presence of active complement stimulated phagocytotic and chemotactic activities of PMNs, and that both caffeine and heparin decreased serum-stimulated phagocytotic and chemotactic activities of PMNs.  相似文献   

15.
By means of functional, morphological, and biophysical methods the in vitro interaction of Echo virus, type 9, strain A. Barty with human polymorphonuclear leucocytes (PMNs) was investigated and analyzed by statistical methods. Control cells and virus-treated PMNs (15 min, 37 degrees C; PMN: virus (pfu)-ratio ranging from 1:1 to 1:50) were exposed to a chemotactic gradient (N-formylmethionyl-leucylphenylalanine = f-Met-Leu-Phe, 10(-8) M/mm) in a Zigmond chamber. Whereas the track velocity of the moving PMNs was not affected by the virus, the degree of orientation of virus-treated PMNs declined in a way dependent on the viral dose and on the time of PMN:virus interaction, resulting in a shift from chemotactic to chemokinetic response. This virus-induced order-disorder transition of chemotactic response can be described by a logarithmic law in analogy to the Weber-Fechner law. Parallel to the functional disturbances, virus-induced changes of cell shape, which could be confirmed by additional light and electron microscopy techniques, were also detected using statistical analysis of cytological data (median cell size, anisotropy of cell shape) by means of two-dimensional histograms. To investigate f-Met-Leu-Phe- or/and Echo 9 virus-induced PMN-cell membrane changes, the monomer-excimer technique with pyrenedecanoic acid as fluorescent probe was applied, which gives information about structural changes of the cell membrane. Addition of the chemotactic peptide (10(-8) M) to control PMNs resulted in a higher rate of excimer formation obviously due to the formation of new functional (receptor) units (= activated cell membrane). Echo 9 virus exhibited an opposite effect. Quantitative analysis of these results revealed that the f-Met-Leu-Phe-induced cell membrane changes were extinguished by the addition of 2 pfu Echo 9 virus. So far, we have additional indicators of a virus-induced order-disorder transition of chemotactic response of human PMNs on a molecular biological level.  相似文献   

16.
It has already been suggested that phosphatidic acids (PAs) play an important role in the regulation of signaling pathways involved in the production of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs). The present study was performed to elucidate the effects of extracellularly added PA-- 1,2-distearoyl- (DSPA) and 1-stearoyl-2-arachidonoyl-sn-glycero-phosphate (SAPA)--on the ROS production and on the elastase release by human PMNs. ROS production was monitored by luminol-amplified chemiluminescence and the elastase activity was measured in the supernatant of the PA-stimulated human PMNs by colorimetric assay. Obtained effects were compared with those of cells stimulated by either a chemotactic tripeptide, phorbol ester or calcium ionophore. Our results show that long-chain PAs at concentrations higher than 3 x 10(-5) mol/l stimulate the ROS production by human PMNs, whereas they were ineffective in promoting the elastase release. The chemiluminescence pattern of the SAPA-stimulated cells exhibited a biphasic curve, whereas cell stimulation with DSPA resulted in a monophasic chemiluminescence curve. Stimulation of the ROS production by PAs in dependence of the fatty acid composition required the activity of protein kinases.  相似文献   

17.
R R Davies  F Zaini 《Sabouraudia》1984,22(3):235-241
The enzymic activity of Trichophyton rubrum has been investigated in relation to the plasma-dependent chemotaxis of polymorphonuclear leucocytes (PMNs). In Boyden-type experiments use of a cytoplasmic extract of T. rubrum (CETr) produces neutrophil chemotactic factor (NCF) from plasma. CETr was shown to have activity for eight enzymes: heat treatment of CETr led to a partial loss of activity for seven enzymes and a significant reduction in the number of PMNs migrating. Addition of CETr to plasma and incubation for 18 h at 37 degrees C before use led to complete loss of chemotactic activity. The similar incubation of plasma with trypsin led to a complete loss of chemotactic activity. CETr has greater activity than trypsin in the production of NCF from plasma. The results are discussed in relation to reports on the importance of serine esterases in PMN chemotaxis. The failure of PMNs to migrate into keratinized tissue infected with T. rubrum is noted and it is suggested that the high enzymic activities necessary for the colonization of keratinized tissue effect a breakdown of NCF.  相似文献   

18.
Locomoting polymorphonuclear leukocytes (PMNs) exhibit a morphological polarity. We demonstrate that they also exhibit a behavioral polarity in their responsiveness to chemotactic factor stimulation. This is demonstrated by (a) the pattern of their locomotion in a homogeneous concentration of chemotactic factors, (b) their responses to increases in the homogeneous concentration of chemotactic factors, and (c) their responses to changes in the direction of a chemotactic gradient. The behavioral polarity is not a function of the rate of locomotion of the particular stimulant used to orient the cells, but may reflect an asymmetric distribution of chemotactic receptors or the motile machinery. The polar behavior affects the chemotactic ability of PMNs. The data are discussed in relation to possible mechanisms of sensing a chemotactic gradient.  相似文献   

19.
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.  相似文献   

20.
There has been major interest in the potential interaction between blood coagulation and inflammation. Most of the effort has focused on cellular interactions involving platelets and polymorphonuclear leukocytes (PMNS). The recent discovery of tissue kallikrein(TK) activity in PMNs prompted the study of the possible role of thrombin(IIa) in this process. Human PMNs were isolated by density gradient centrifugation. Human IIa was compared with fMLP with respect to chemotaxis and enzyme release. Results from the challenges by IIa and fMLP were compared to a NaCl control using Student's paired t-test. IIa was a potent chemotactic agent for PMNs (p less than or equal to 0.0121) and stimulated the release of TK (p less than or equal to 0.0001) as determined by hydrolysis of S-2266. FMLP significantly stimulated PMN chemotaxis (p less than or equal to 0.0028) but had no effect on TK release. Release of TK was confirmed by Western Blot analysis and 35S-methionine incorporation into a 35 KD protein after IIa challenge. These results demonstrate that IIa is chemotactic for PMNs and can cause release of tissue kallikrein demonstrating a direct role for blood coagulation in the regulation of the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号