首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.  相似文献   

2.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

3.
Variation in the concentration of orthophosphate (Pi) in actively contracting, chemically skinned muscle fibers has proved to be a useful probe of actomyosin interaction. Previous studies have shown that isometric tension (Po) decreases linearly in the logarithm of [Pi] for [Pi] > or = 200 microM. This result can be explained in terms of cross-bridge models in which the release of Pi is involved in the transition from a weakly bound, low-force actin x myosin x ADP x Pi state to a strongly bound, high-force, actin x myosin x ADP state. The 200 microM minimum [Pi] examined results from an inability to buffer the intrafiber, diffusive buildup of Pi resulting from the fiber ATPase. In the present study, we overcome this limitation by employing the enzyme purine nucleoside phosphorylase with substrate 7-methylguanosine to reduce the calculated internal [Pi] in contracting rabbit psoas fibers to < 5 microM. At 10 degrees C we find that Po continues to increase as the [Pi] decreases for [Pi] > or = 100 microM. Below this [Pi], Po is approximately constant. These results indicate that the free energy drop in the cross-bridge powerstroke is approximately 9 kT. This value is shown to be consistent with observations of muscle efficiency at physiological temperatures.  相似文献   

4.
Structural changes of contractile proteins were examined by millisecond time-resolved two-dimensional x-ray diffraction recordings during relaxation of skinned skeletal muscle fibers from rigor after caged ATP photolysis. It is known that the initial dissociation of the rigor actomyosin complex is followed by a period of transient active contraction, which is markedly prolonged in the presence of ADP by a mechanism yet to be clarified. Both single-headed (overstretched muscle fibers with exogenous myosin subfragment-1) and two-headed (fibers with full filament overlap) preparations were used. Analyses of various actin-based layer line reflections from both specimens showed the following: 1), The dissociation of the rigor actomyosin complex was fast and only modestly decelerated by ADP and occurred in a single exponential manner without passing through any detectable transitory state. Its ADP sensitivity was greater in the two-headed preparation but fell short of explaining the large ADP effect on the transient active contraction. 2), The decay of the activated state of the thin filament followed the time course of tension more closely in an ADP-dependent manner. These results suggest that the interplay between the reattached active myosin heads and the thin filament is responsible for the prolonged active contraction in the presence of ADP.  相似文献   

5.
6.
Inhibition of muscle force by vanadate.   总被引:1,自引:1,他引:0       下载免费PDF全文
Vanadate (Vi), an analogue of inorganic phosphate (Pi), is known to bind tightly with a long half life to the myosin MgATPase site, producing a complex which inhibits force. Both of these ligands bind to an actin.myosin.ADP state that follows the release of Pi in the enzymatic cycle, and their effects on muscle fibers and proteins in solution provide information on the properties of this state. The inhibition of active force generation began to occur at a [Vi] of 5 microM and was 90% complete at a [Vi] of 1 mM. Hill plots of the inhibition of force by Vi approximated that expected for a simple binding isotherm. Similar plots were obtained at both 25 degrees C and 5 degrees C. A simple binding isotherm is not expected to occur in a muscle fiber where steric constraints imposed by the intact filaments should introduce more complexity into the energetics of ligand binding. The inhibition of MgATPase activity for acto-subfragment-1 to 50% of controls occurred at a [Vi] which was only 20-fold higher than that required to inhibit force generation in fibers to the same level. Some models of actomyosin interactions would predict that the range of [Vi] required for complete force inhibition in fibers and the difference in the [Vi] required for inhibition in fibers and of myosin in solution would both be much larger.  相似文献   

7.
Isolated skinned frog skeletal muscle fibers were activated (increasing [Ca2+]) and then relaxed (decreasing [Ca2+]) with solution changes, and muscle force and stiffness were recorded during the steady state. To investigate the actomyosin cycle, the biochemical species were changed (lowering [MgATP] and elevating [H2PO4-]) to populate different states in the actomyosin ATPase cycle. In solutions with 200 microM [MgATP], compared with physiological [MgATP], the slope of the plot of relative steady state muscle force vs. stiffness was decreased. At low [MgATP], cross-bridge dissociation from actin should be reduced, increasing the population of the last cross-bridge state before dissociation. These data imply that the last cross-bridge state before dissociation could be an attached low-force-producing or non-force-producing state. In solutions with 10 mM total Pi, compared to normal levels of MgATP, the maximally activated muscle force was reduced more than muscle stiffness, and the slope of the plot of relative steady state muscle force vs. stiffness was reduced. Assuming that in elevated Pi, Pi release from the cross-bridge is reversed, the state(s) before Pi release would be populated. These data are consistent with the conclusion that the cross-bridges are strongly bound to actin before Pi release. In addition, if Ca2+ activates the ATPase by allowing for the strong attachment of the myosin to actin in an A.M.ADP.Pi state, it could do so before Pi release. The calcium sensitivity of muscle force and stiffness in solutions with 4 mM [MgATP] was bracketed by that measured in solutions with 200 microM [MgATP], where muscle force and stiffness were more sensitive to calcium, and 10 mM total Pi, where muscle force and stiffness were less sensitive to calcium. The changes in calcium sensitivity were explained using a model in which force-producing and rigor cross-bridges can affect Ca2+ binding or promote the attachment of other cross-bridges to alter calcium sensitivity.  相似文献   

8.
The effects of laser-flash photolytic release of ATP from caged ATP [P3-1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross-bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross-bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle.  相似文献   

9.
Inorganic phosphate (Pi) decreases the isometric tension of skinned skeletal muscle fibers, presumably by increasing the relative fraction of a low force quaternary complex of actin, myosin, ADP, and Pi (A.M.ADP.Pi). At the same time, Pi gives rise to a fast relaxing mechanical component as detected by oscillations at 500 Hz. To characterize the dynamic properties of this A.M.ADP.Pi complex, the effect of Pi on the tension response to stretch was investigated with rabbit psoas fibers. A ramp stretch applied in the presence of 20 mM Pi increased tension more than in the control solution (0 mM Pi) but reduced the fast relaxing component to the control level. Thus, a stretch seems to convert the low force, fast relaxing A.M.ADP.Pi complex to a high force, slow relaxing form. However, the Pi-induced enhancement of the tension response was not observed until the fibers were stretched more than 0.4% of their length, suggesting that a critical cross-bridge extension of approximately 4 nm is required for this conversion. The rate constant of the attachment/detachment of this low force complex was estimated from the velocity dependence of the enhancement. It was approximately 10 s-1, in marked contrast to the A.M.ADP.Pi complex under low salt, relaxed conditions (approximately 10,000 s-1). The enhancement of the tension response was not observed when isometric tension was reduced by lowering free calcium, implying that calcium and Pi affect different steps in the actomyosin ATPase cycle during contraction.  相似文献   

10.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

11.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

12.
B Hambly  K Franks    R Cooke 《Biophysical journal》1992,63(5):1306-1313
We have measured the orientation of a region of the myosin head, close to the junction with the rod, during active force generation. Paramagnetic probes were attached specifically to a reactive cysteine (Cys 125) of purified myosin light chain 2 (LC2) and exchanged into myosin heads in glycerinated rabbit psoas muscle. Electron paramagnetic resonance spectroscopy was used to monitor the orientation of the probes. Previous work has shown that the LC2 bound spin probes are significantly ordered in rigor and muscle in the presence of adenosine diphosphate (ADP). In contrast, there is a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, all of the LC2 bound spin probes (98 +/- 1.6%) show an angular distribution similar to that of relaxed muscle. These findings contrast with results obtained from probes attached to Cys 707 on the cross-bridge, located close to the actin binding site, where, during active force generation, a proportion of the spin probes were ordered as in rigor, whereas the remaining probes were disordered as in relaxation. To test the hypothesis that this ordered component is due to modification of Cys 707, we measured the spectra obtained from probes attached to LC2 in fibers modified at Cys 707. The modification of Cys 707 did not produce an ordered component in these spectra. The absence of an ordered component at the LC2 site limits the populations of some states in active fibers. An actin/myosin/ADP state is thought to be the major force-producing state. Our present results show that the populations of states with ordered probes on LC2 are < 2% in active fibers; thus, the major force-producing state is different from the one obtained by addition of ADP to rigor fibers.  相似文献   

13.
We have studied the binding of adenosine diphosphate (ADP) to attached cross-bridges in chemically skinned rabbit psoas muscle fibers and the effect of that binding on the cross-bridge detachment rate constants. Cross-bridges with ADP bound to the active site behave very similarly to cross-bridges without any nucleotide at the active site. First, fiber stiffness is the same as in rigor, which presumably implies that, as in rigor, all the cross-bridges are attached. Second, the cross-bridge detachment rate constants in the presence of ADP, measured from the rate of decay of the force induced by a small stretch, are, over a time scale of minutes, similar to those seen in rigor. Because ADP binding to the active site does not cause an increase in the cross-bridge detachment rate constants, whereas binding of nucleotide analogues such as adenyl-5'-yl imidodiphosphate (AMP-PNP) and pyrophosphate (PPi) do, it was possible, by using ADP as a competitive inhibitor of PPi or AMP-PNP, to measure the competitive inhibition constant and thereby the dissociation constant for ADP binding to attached cross-bridges. We found that adding 175 microM ADP to 4 mM PPi or 4 mM AMP-PNP produces as much of a decrease in the apparent cross-bridge detachment rate constants as reducing the analogue concentration from 4 to 1 mM. This suggests that ADP is binding to attached cross-bridges with a dissociation constant of approximately 60 microM. This value is quite similar to that reported for ADP binding to actomyosin subfragment-1 (acto-S1) in solution, which provides further support for the idea that nucleotides and nucleotide analogues seem to bind about as strongly to attached cross-bridges in fibers as to acto-S1 in solution (Johnson, R.E., and P. H. Adams. 1984. FEBS Letters. 174:11-14; Schoenberg, M., and E. Eisenberg. 1985. Biophysical Journal. 48:863-871; Biosca, J.A., L.E. Greene, and E. Eisenberg. 1986. Journal of Biological Chemistry. 261:9793-9800).  相似文献   

14.
Equilibrium binding studies were used to determine the binding constant of vanadate ion (Vi), to the complex of actomyosin subfragment 1 (S1) with ADP and Vi and of actin to the myosin S1.ADP.Vi complex. The proteins used were obtained from rabbit skeletal muscle. Pre-steady-state measurements were also performed to determine the rates of Vi association and dissociation from the actomyosin S1.ADP.Vi complex. Using these measured values in a simple model, the steady-state actomyosin S1 ATPase activity was predicted over a range of Vi concentrations. This model predicted that Vi would have little effect on the actomyosin S1 ATPase activity. In agreement with this prediction, the measured ATPase activity of actomyosin S1 was not greatly inhibited by Vi, except at high concentrations at which polymeric species of Vi may occur (greater than 900 microM).  相似文献   

15.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

16.
A model is presented to describe the inhibition of muscle fiber contraction by ligands that compete with MgATP. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decrease the force developed in isometric contractions and act as weak competitive inhibitors of the maximum velocity of contraction (Pate & Cooke, 1985). These observations provide information on the energetics of actomyosin ligand states at the end of the power-stroke where MgATP dissociates the myosin cross-bridge from actin, and they are analysed in terms of a seven state model of cross-bridge kinetics. The model can reconcile the observations that these ligands bind tightly to fibers, Kd = 10(-4) M, while they are only weak inhibitors of fiber velocity, Ki = 2 X 10(-3) M. It provides a reasonable fit to the data and leads to several conclusions concerning the properties of the cross-bridge states. The states with bound ligand are shifted axially so that they occur earlier in the power-stroke than the nucleotide-free rigor state. This shift also explains the axial lengthening seen upon addition of ligands to rigor fibers. We can conclude that these ligands cause small perturbations in the cross-bridge configuration rather than large shifts. A second conclusion is that cross-bridges do not detach from actin during their power-strokes. Instead they traverse the entire length of the power stroke and are detached only at the end, leading to the suggestion that the cycling of bridges in isometric fibers is due to fluctuations in the relative positions of thick and thin filaments. With some further assumptions, the model also explains many of the rate constants and equilibrium constants of the actin-myosin-ligand interaction that have been measured in solution.  相似文献   

17.
In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state.Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.  相似文献   

18.
We have used polyethylene glycol (PEG) to perturb the actomyosin interaction in active skinned muscle fibers. PEG is known to potentiate protein-protein interactions, including the binding of myosin to actin. The addition of 5% w/v PEG (MW 300 or 4000) to active fibers increased fiber tension and decreased shortening velocity and ATPase activity, all by 25-40%. Variation in [ADP] or [ATP] showed that the addition of PEG had little effect on the dissociation of the cross-bridge at the end of the power stroke. Myosin complexed with ADP and the phosphate analog V(i) or AlF(4) binds weakly to actin and is an analog of a pre-power-stroke state. PEG substantially enhances binding of these states both in active fibers and in solution. Titration of force with increasing [P(i)] showed that PEG increased the free energy available to drive the power stroke by about the same amount as it increased the free energy available from the formation of the actomyosin bond. Thus PEG potentiates the binding of myosin to actin in active fibers, and it provides a method for enhancing populations of some states for structural or mechanical studies, particularly those of the normally weakly bound transient states that precede the power stroke.  相似文献   

19.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

20.
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号