首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth.  相似文献   

3.
4.
5.
Metabolism of Formate in Methanobacterium formicicum   总被引:24,自引:10,他引:14       下载免费PDF全文
Methanobacterium formicicum strain JF-1 was cultured with formate as the sole energy source in a pH-stat fermentor. Growth was exponential, and both methane production and formate consumption were linear functions of the growth rate. Hydrogen was produced in only trace amounts, and the dissolved H2 concentration of the culture medium was below 1 μM. The effect of temperature or pH on the rate of methane formation was studied with a single fermentor culture in mid-log phase that was grown with formate under standard conditions at 37°C and pH 7.6. Methane formation from formate occurred over the pH range from 6.5 to 8.6, with a maximum at pH 8.0. The maximum temperature of methanogenesis was 56°C. H2 production increased at higher temperatures. Hydrogen and formate were consumed throughout growth when both were present in saturating concentrations. The molar growth yields were 1.2 ± 0.06 g (dry weight) per mol of formate and 4.8 ± 0.24 g (dry weight) per mol of methane. Characteristics were compared for cultures grown with either formate or H2-CO2 as the sole energy source at 37°C and pH 7.6; the molar growth yield for methane of formate cultures was 4.8 g (dry weight) per mol, and that of H2-CO2 cultures was 3.5 g (dry weight) per mol. Both formate and H2-CO2 cultures had low efficiencies of electron transport phosphorylation; formate-cultured cells had greater specific activities of coenzyme F420 than did H2-CO2-grown cultures. Hydrogenase, formate dehydrogenase, chromophoric factor F342, and low levels of formyltetrahydrofolate synthetase were present in cells cultured with either substrate. Methyl viologen-dependent formate dehydrogenase was found in the soluble fraction from broken cells.  相似文献   

6.
7.
A correlation between the rate of ATP synthesis by F0F1 ATP synthase and formate oxidation by formate hydrogen lyase (FHL) has been found in inside-out membrane vesicles of the Escherichia coli mutant JW 136 (Δhyahyb) with double deletions of hydrogenases 1 and 2, grown anaerobically on glucose in the absence of external electron acceptors at pH 6.5. ATP synthesis was suppressed by the H+-ATPase inhibitors N,N′-dicyclohexylcarbodiimide, sodium azide, and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of the vesicles. The maximal rate of ATP synthesis (0.83 μmol/min per mg protein) was determined at simultaneous application of sodium formate, ADP, and inorganic phosphate, and was stimulated by K+ ions. The results confirm the assumption of a dual role of hydrogenase 3, the formate hydrogen lyase subunit that can couple the reduction of protons to H2 and their translocation through membrane with chemiosmotic synthesis of ATP.  相似文献   

8.
9.
A series of Methanosarcina barkeri mutants lacking the genes encoding the enzymes involved in the C1 oxidation/reduction pathway were constructed. Mutants lacking the methyl-tetrahydromethanopterin (H4MPT):coenzyme M (CoM) methyltransferase-encoding operon (Δmtr), the methylene-H4MPT reductase-encoding gene (Δmer), the methylene-H4MPT dehydrogenase-encoding gene (Δmtd), and the formyl-methanofuran:H4MPT formyl-transferase-encoding gene (Δftr) all failed to grow using either methanol or H2/CO2 as a growth substrate, indicating that there is an absolute requirement for the C1 oxidation/reduction pathway for hydrogenotrophic and methylotrophic methanogenesis. The mutants also failed to grow on acetate, and we suggest that this was due to an inability to generate the reducing equivalents needed for biosynthetic reactions. Despite their lack of growth on methanol, the Δmtr and Δmer mutants were capable of producing methane from this substrate, whereas the Δmtd and Δftr mutants were not. Thus, there is an Mtr/Mer bypass pathway that allows oxidation of methanol to the level of methylene-H4MPT in M. barkeri. The data further suggested that formaldehyde may be an intermediate in this bypass; however, no methanol dehydrogenase activity was found in Δmtr cell extracts, nor was there an obligate role for the formaldehyde-activating enzyme (Fae), which has been shown to catalyze the condensation of formaldehyde and H4MPT in vitro. Both the Δmer and Δmtr mutants were able to grow on a combination of methanol plus acetate, but they did so by metabolic pathways that are clearly distinct from each other and from previously characterized methanogenic pathways.  相似文献   

10.
11.
Methanol-resistant mutant acetogen Clostridium sp. MT1424 originally producing only 365 mM acetate from CO2/CO was engineered to eliminate acetate production and spore formation using Cre-lox66/lox71-system to power subsequent methanol production via expressing synthetic methanol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, three copies of each, assembled in cluster and integrated to chromosome using Tn7-based approach. Production of 2.2 M methanol was steady (p < 0.005) in single step fermentations of 20 % CO2 + 80 % H2 blend (v/v) 25 day runs each in five independent repeats. If the integrated cluster comprised only three copies of formate dehydrogenase the respective recombinants produced 95 mM formate (p < 0.005) under the same conditions. For commercialization, the suggested source of inorganic carbon would be CO2 waste of IGCC power plant. Hydrogen may be produced in situ via powered by solar panels electrolysis.  相似文献   

12.
Electrically reduced neutral red (NR) served as the sole source of reducing power for growth and metabolism of pure and mixed cultures of H2-consuming bacteria in a novel electrochemical bioreactor system. NR was continuously reduced by the cathodic potential (−1.5 V) generated from an electric current (0.3 to 1.0 mA), and it was subsequently oxidized by Actinobacillus succinogenes or by mixed methanogenic cultures. The A. succinogenes mutant strain FZ-6 did not grow on fumarate alone unless electrically reduced NR or hydrogen was present as the electron donor for succinate production. The mutant strain, unlike the wild type, lacked pyruvate formate lyase and formate dehydrogenase. Electrically reduced NR also replaced hydrogen as the sole electron donor source for growth and production of methane from CO2. These results show that both pure and mixed cultures can function as electrochemical devices when electrically generated reducing power can be used to drive metabolism. The potential utility of utilizing electrical reducing power in enhancing industrial fermentations or biotransformation processes is discussed.  相似文献   

13.
The kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei were studied with log-phase formate-grown cultures. The progress of formate degradation was followed by the formyltetrahydrofolate synthetase assay for formate and fitted to the integrated form of the Michaelis-Menten equation. The Km and Vmax values for Methanobacterium formicicum were 0.58 mM formate and 0.037 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanobacterium formicicum was 26 μM. The Km and Vmax values for Methanospirillum hungatei were 0.22 mM and 0.044 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanospirillum hungatei was 15 μM. The apparent Km for formate by formate dehydrogenase in cell-free extracts of Methanospirillum hungatei was 0.11 mM. The Km for H2 uptake by cultures of Methanobacterium formicicum was 6 μM dissolved H2. Formate and H2 were equivalent electron donors for methanogenesis when both substrates were above saturation; however, H2 uptake was severely depressed when formate was above saturation and the dissolved H2 was below 6 μM. Formate-grown cultures of Methanobacterium formicicum that were substrate limited for 57 h showed an immediate increase in growth and methanogenesis when formate was added to above saturation.  相似文献   

14.
We calculated the potential H2 and formate diffusion between microbes and found that at H2 concentrations commonly found in nature, H2 could not diffuse rapidly enough to dispersed methanogenic cells to account for the rate of methane synthesis but formate could. Our calculations were based on individual organisms dispersed in the medium, as supported by microscopic observations of butyrate-degrading cocultures. We isolated an axenic culture of Syntrophomonas wolfei and cultivated it on butyrate in syntrophic coculture with Methanobacterium formicicum; during growth the H2 concentration was 63 nM (10.6 Pa). S. wolfei contained formate dehydrogenase activity (as does M. formicicum), which would allow interspecies formate transfer in that coculture. Thus, interspecies formate transfer may be the predominant mechanism of syntrophy. Our diffusion calculations also indicated that H2 concentration at the cell surface of H2-consuming organisms was low but increased to approximately the bulk-fluid concentration at a distance of about 10 μm from the surface. Thus, routine estimation of kinetic parameters would greatly overestimate the Km for H2 or formate.  相似文献   

15.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

16.
Formate oxidation and oxygen reduction by leaf mitochondria   总被引:6,自引:3,他引:3       下载免费PDF全文
Oliver DJ 《Plant physiology》1981,68(3):703-705
Mitochondria isolated from the leaves of several plant species were investigated for the presence of NAD-linked formate dehydrogenase. The NADH produced was oxidized by the electron transport sequence and was coupled to ATP synthesis. The amounts of formate dehydrogenase, and, thereby, the capacity for formate-dependent O2 uptake, varied greatly among species. While no activity was detectable in mitochondria from soybean leaves, the rate of formate oxidation by spinach mitochondria was about one-half the rate of malate oxidation. In spinach, only mitochondria from green tissues oxidized formate. These last two observations raise questions as to the role of this reaction and the possible sources of the formate metabolized.  相似文献   

17.
The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.  相似文献   

18.
Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.  相似文献   

19.
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.  相似文献   

20.
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号