首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification and evaluation of the ecological and environmental factors shaping patterns of natural genetic variation are fundamental goals of population and conservation genetics. Many studies focus on factors affecting single species, but it is also important to test whether some influential biotic and abiotic factors are common drivers of genetic diversity across species, or if species or species groups are each affected by different forces; a multi‐species analysis is necessary for this. Here we analysed the molecular variation from five mammal species (roe deer, red deer, chamois, mountain hare and European brown hare) at mtDNA and microsatellite loci from the eastern Italian Alps. We use phylogeographical and landscape‐level analyses to test the relative influence of large‐scale geographical history and contemporary environmental characteristics of the landscape on genetic diversity and differentiation. We found: (1) all study species except brown hare are strongly differentiated into two main groups, located west and east of a major river valley; (2) significant correlations between levels of within‐population diversity at both mtDNA and microsatellite loci, and several landscape features such as alpine grassland, water courses and anthropized areas. We conclude that heterogeneous landscape has some influence on within‐population diversity, but biogeographical history has probably had the stronger influence on current genetic patterns, despite an apparently large dispersal potential of certain species. However, our results for brown hare show that management actions such as stocking may alter these large‐scale patterns.  相似文献   

2.
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.  相似文献   

3.
Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift.  相似文献   

4.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The well documented historical translocations of the European rabbit (Oryctolagus cuniculus) offer an excellent framework to test the genetic effects of reductions in effective population size. It has been proposed that rabbits went through an initial bottleneck at the time of their establishment in Australia, as well as multiple founder events during the rabbit's colonization process. To test these hypotheses, genetic variation at seven microsatellite loci was measured in 252 wild rabbits from five populations across Australia. These populations were compared to each other and to data from Europe. No evidence of a genetic bottleneck was observed with the movement of 13 rabbits from Europe to Australia when compared to French data. Within Australia the distribution of genetic diversity did not reflect the suggested pattern of sequential founder effects. In fact, the current pattern of genetic variation in Australia is most likely a result of multiple factors including mutation, genetic drift and geographical differentiation. The absence of reduced genetic diversity is almost certainly a result of the rabbit's rapid population expansion at the time of establishment in Australia. These results highlight the importance of population growth following a demographic bottleneck, which largely determines the severity of genetic loss.  相似文献   

6.
Achieving long‐term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat‐based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation‐by‐distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.  相似文献   

7.
Mammal species characterized by highly fluctuating populations often maintain genetic diversity in response to frequent demographic bottlenecks, suggesting the ameliorating influence of life history and behavioral factors. Immigration in particular is expected to promote genetic recovery and is hypothesized to be the most likely process maintaining genetic diversity in fluctuating mammal populations. Most demographic bottlenecks have been inferred retrospectively, and direct analysis of a natural population before, during, and after a bottleneck is rare. Using a continuous 10-year dataset detailing the complete demographic and genetic history of a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis), we analyzed the genetic consequences of a 4-year demographic bottleneck that reduced the population to seven adult squirrels, and we evaluated the potential “rescue effect” of immigration. Analysis of six microsatellite loci revealed that, while a decline in allelic richness was observed during the bottleneck, there was no observed excess of heterozygosity, a characteristic bottleneck signature, and no evidence for heterozygote deficiency during the recovery phase. In addition, we found no evidence for inbreeding depression during or after the bottleneck. By identifying immigrants and analyzing their demographic and genetic contributions, we found that immigration promoted demographic recovery and countered the genetic effects of the bottleneck, especially the loss of allelic richness. Within 3 years both population size and genetic variation had recovered to pre-bottleneck levels, supporting the role of immigration in maintaining genetic variation during bottleneck events in fluctuating populations. Our analyses revealed considerable variation among analytical techniques in their ability to detect genetic bottlenecks, suggesting that caution is warranted when evaluating bottleneck events based on one technique.  相似文献   

8.
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource‐associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well‐studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource‐associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource‐associated population genetic structure.  相似文献   

9.
Aim This study aims to link demographic traits and post‐glacial recolonization processes with genetic traits in Himantoglossum hircinum (L.) Spreng (Orchidaceae), and to test the implications of the central–marginal concept (CMC) in Europe. Location Twenty sites covering the entire European distribution range of this species. Methods We employed amplified fragment length polymorphism (AFLP) markers and performed a plastid microsatellite survey to assess genetic variation in 20 populations of H. hircinum located along central–marginal gradients. We measured demographic traits to assess population fitness along geographical gradients and to test for correlations between demographic traits and genetic diversity. We used genetic diversity indices and analyses of molecular variance (AMOVA) to test hypotheses of reduced genetic diversity and increased genetic differentiation and isolation from central to peripheral sites. We used Bayesian simulations to analyse genetic relationships among populations. Results Genetic diversity decreased significantly with increasing latitudinal and longitudinal distance from the distribution centre when excluding outlying populations. The AMOVA revealed significant genetic differentiation among populations (FST = 0.146) and an increase in genetic differentiation from the centre of the geographical range to the margins (except for the Atlantic group). Population fitness, expressed as the ratio NR/N, decreased significantly with increasing latitudinal distance from the distribution centre. Flower production was lower in most eastern peripheral sites. The geographical distribution of microsatellite haplotypes suggests post‐glacial range expansion along three major migratory pathways, as also supported by individual membership fractions in six ancestral genetic clusters (C1–C6). No correlations between genetic diversity (e.g. diversity indices, haplotype frequency) and population demographic traits were detected. Main conclusions Reduced genetic diversity and haplotype frequency in H. hircinum at marginal sites reflect historical range expansions. Spatial variation in demographic traits could not explain genetic diversity patterns. For those sites that did not fit into the CMC, the genetic pattern is probably masked by other factors directly affecting either demography or population genetic structure. These include post‐glacial recolonization patterns and changes in habitat suitability due to climate change at the northern periphery. Our findings emphasize the importance of distinguishing historical effects from those caused by geographical variation in population demography of species when studying evolutionary and ecological processes at the range margins under global change.  相似文献   

10.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

11.
Aim The study of geographical discontinuities in the distribution of genetic variability in natural populations is a central topic in both evolutionary and conservation research. In this study, we aimed to analyse (1) the factors associated with genetic diversity at the landscape spatial scale in the highly specialized grasshopper Mioscirtus wagneri and (2) to identify the relative contribution of alternative factors to the observed patterns of genetic structure in this species. Location La Mancha region, Central Spain. Methods We sampled 28 populations of the grasshopper M. wagneri and genotyped 648 individuals at seven microsatellite loci. We employed a causal modelling approach to identify the most influential variables associated with genetic differentiation within a multiple hypothesis‐testing framework. Results We found that genetic diversity differs among populations located in different river basins and decreases with population isolation. Causal modelling analyses showed variability in the relative influence of the studied landscape features across different spatial scales. When a highly isolated population is considered, the analyses suggested that geographical distance is the only factor explaining the genetic differentiation between populations. When that population is excluded, the causal modelling analysis revealed that elevation and river basins are also relevant factors contributing to explaining genetic differentiation between the studied populations. Main conclusions These results indicate that the spatial scale considered and the inclusion of outlier populations may have important consequences on the inferred contribution of alternative landscape factors on the patterns of genetic differentiation even when all populations are expected to similarly respond to landscape structure. Thus, a multiscale perspective should also be incorporated into the landscape genetics framework to avoid biased conclusions derived from the spatial scale analysed and/or the geographical distribution of the studied populations.  相似文献   

12.
Increasing attempts are made to understand the factors responsible for both the demographic and genetic depletion in amphibian populations. Landscape genetics aims at a spatially explicit correlation of genetic population parameters to landscape features. Using data from the endangered fire-bellied toad Bombina bombina in Brandenburg (Northeastern Germany), we performed an environmental niche factor analysis (ENFA), relating demographic (abundance) and genetic (diversity at 17 microsatellite loci and partial sequences of the mitochondrial control region in 434 individuals from 16 populations) parameters to ecological and anthropogenic variables such as temperature, precipitation, soil wetness, water runoff, vegetation density, and road/traffic impact. We found significant correlations between road disturbance and observed heterozygosity and between soil wetness and mitochondrial diversity. As the influences of the environmental variables can differ between different indicators for genetic diversity, population size and abundance data, our ENFA-based landscape genetics approach allows us to put various aspects of long- versus short term effective population size and genetic connectivity into an ecological and spatially explicit context, enabling potentially even forecast assessment under future environmental scenarios.  相似文献   

13.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

14.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   

15.
Understanding population genetic structure of climate‐sensitive herbivore species is important as it provides useful insights on how shifts in environmental conditions can alter their distribution and abundance. Herbivore responses to the environment can have a strong indirect cascading effect on community structure. This is particularly important for Royle's pika (Lagomorpha: Ochotona roylei), a herbivorous talus‐dwelling species in alpine ecosystem, which forms a major prey base for many carnivores in the Himalayan arc. In this study, we used seven polymorphic microsatellite loci to detect evidence for recent changes in genetic diversity and population structure in Royle's pika across five locations sampled between 8 and 160 km apart in the western Himalaya. Using four clustering approaches, we found the presence of significant contemporary genetic structure in Royle's pika populations. The detected genetic structure could be primarily attributed to the landscape features in alpine habitat (e.g., wide lowland valleys, rivers) that may act as semipermeable barriers to gene flow and distribution of food plants, which are key determinants in spatial distribution of herbivores. Pika showed low inbreeding coefficients (FIS) and a high level of pairwise relatedness for individuals within 1 km suggesting low dispersal abilities of talus‐dwelling pikas. We have found evidence of a recent population bottleneck, possibly due to effects of environmental disturbances (e.g., snow melting patterns or thermal stress). Our results reveal significant evidence of isolation by distance in genetic differentiation (FST range = 0.04–0.19). This is the first population genetics study on Royle's pika, which helps to address evolutionary consequences of climate change which are expected to significantly affect the distribution and population dynamics in this talus‐dwelling species.  相似文献   

16.
The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), is an important agricultural pest that has caused serious economic losses in the major rice-producing areas of China. To effectively manage this insect pest, we analysed its genetic variation, genetic structure and population demographic history. We used nine nuclear microsatellite loci to investigate the genetic diversity and population genetic structure of SBPH at 43 sampling sites in China. High levels of genetic diversity and genetic differentiation among most populations were detected. Overall, neighbour-joining dendrograms, STRUCTURE and principal coordinate analysis (PCoA) revealed no genetically distinct groups and exhibited an admixed phylogeographic structure in China. Isolation by distance (IBD) and spatial autocorrelation analyses demonstrated no correlation between genetic distance and geographic distance. On the other hand, bottleneck analysis indicated that SBPH populations had not undergone severe bottleneck effects in these regions. This study provides useful data for resolving the genetic relationships and migration patterns of SBPH and thus contributes to developing effective management strategies for this pest.  相似文献   

17.
Interpreting patterns of population structure in nature is often challenging, especially in dynamic landscapes where population genetic connectivity evolves over time. In this study, we document the absence of migration-drift equilibrium in a stream-dwelling euryhaline fish resulting from past fine-scale drainage rearrangements and evaluate the relative contribution of past and current hydrological landscapes on observed population structure. Based on allelic variation at nine microsatellite loci, genetic relationships among 12 populations of brook charr, Salvelinus fontinalis, from Gros Morne National Park of Canada (GMNP, Newfoundland, Canada) did not reflect current stream hierarchical structure. In addition, we observed no correlation between population differentiation and contemporary landscape features (waterway distance and sums of altitudinal differences). Instead, population relationships were consistent with historical hydrological structure predicted a priori based on geomorphological and biogeographical evidences. Also, population differentiation was strongly correlated with inferred historical landscape features. Contemporary barriers have apparently preserved the signature of past genetic connectivity by constraining gene flow. Based on the relationships between population differentiation and current and past landscape features at various spatial scales, we suggest that brook charr genetic diversity in GMNP is mostly the result of small distance migrations at the time of colonization and subsequent differentiation through drift. This study highlights the potential of approaching landscapes from a combination of contemporary and historical perspectives when interpreting nonequilibrium population structures resulting from landscape rearrangement.  相似文献   

18.
Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.  相似文献   

19.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

20.
Conserving biodiversity in human-dominated systems requires research into mechanisms that can maintain biodiversity in fragmented landscapes. Home-garden as traditional agroforestry system in many regions has shown great value in maintaining a wide range of species. Here we show that home-garden populations are also capable of maintaining high level of genetic variation. Using six polymorphic microsatellite DNA markers, we have genotyped 260 individuals of Acacia pennata, a popular wild vegetable in the tropical region of southeast Asia. Samples were collected from home-gardens and wild populations in Xishuangbanna, southwest China. Microsatellite DNA diversity in planted populations were compared with that in geographically nearby wild populations with similar population size. Over 90?% of microsatellite genetic variation in wild populations was also present in planted populations. Pairwise comparison of planted and adjacent wild population showed no significant difference in allelic diversity and heterozygosity. Analysis revealed no significant genetic differences between wild and planted populations, while four home-garden populations showed sign of bottleneck. We conclude that home-gardens show great promise in maintaining genetic diversity, and that these managed patches could be of significant conservation value in tropical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号