首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the synthesis of methionine from homocysteine. In our initial report, we observed a reduced body weight in Bhmt(-/-) mice. We initiated this study to investigate the potential role of BHMT in energy metabolism. Compared with the controls (Bhmt(+/+)), Bhmt(-/-) mice had less fat mass, smaller adipocytes, and better glucose and insulin sensitivities. Compared with the controls, Bhmt(-/-) mice had increased energy expenditure, with no changes in food intake, fat uptake or absorption, or in locomotor activity. The reduced adiposity in Bhmt(-/-) mice was not due to hyperthermogenesis. Bhmt(-/-) mice failed to maintain a normal body temperature upon cold exposure because of limited fuel supplies. In vivo and ex vivo tests showed that Bhmt(-/-) mice had normal lipolytic function. The rate of (14)C-labeled fatty acid incorporated into [(14)C]triacylglycerol was the same in Bhmt(+/+) and Bhmt(-/-) gonadal fat depots (GWAT), but it was 62% lower in Bhmt(-/-) inguinal fat depots (IWAT) compared with that of Bhmt(+/+) mice. The rate of (14)C-labeled fatty acid oxidation was the same in both GWAT and IWAT from Bhmt(+/+) and Bhmt(-/-) mice. At basal level, Bhmt(-/-) GWAT had the same [(14)C]glucose oxidation as did the controls. When stimulated with insulin, Bhmt(-/-) GWAT oxidized 2.4-fold more glucose than did the controls. Compared with the controls, the rate of [(14)C]glucose oxidation was 2.4- and 1.8-fold higher, respectively, in Bhmt(-/-) IWAT without or with insulin stimulus. Our results show for the first time a role for BHMT in energy homeostasis.  相似文献   

2.
Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.  相似文献   

3.
4.
Choline deficiency and treatment with methotrexate (MTX) both are associated with fatty infiltration of the liver. Choline, methionine, and folate metabolism are interrelated and converge at the regeneration of methionine from homocysteine. MTX perturbs folate metabolism, and it is possible that it also influences choline metabolism. We fed rats a choline deficient diet for 2 weeks and/or treated them with methotrexate (MTX; 0.1 mg/kg daily). Choline deficiency lowered hepatic concentrations of choline (to 43% control), phosphocholine (PCho; to 18% control), glycerophosphocholine (GroPCho; to 46% control), betaine (to 30% control), phosphatidylcholine (PtdCho; to 62% control), methionine (to 80% control), and S-adenosylmethionine (AdoMet; to 57% control), while S-adenosylhomocysteine (AdoHcy) and triacylglycerol concentrations increased (to 126% and 319% control, respectively). MTX treatment alone lowered hepatic concentrations of PCho (to 48% control), GroPCho (to 69% control), betaine (to 55% control), and AdoMet (to 75% control). The addition of MTX treatment to choline deficiency resulted in a larger decrease in AdoMet concentrations (to 75% control) and larger increases in AdoHcy and triacylglycerol concentrations (to 150% and 500% control, respectively) than was observed in choline deficiency alone. Livers from MTX-treated animals used radiolabeled choline to make the same metabolites as did livers from controls (most of the label was converted to PCho and betaine). In choline deficient animals, most of the labeled choline was converted to PtdCho. Therefore, MTX depleted hepatic PCho, GroPCho, and betaine by a mechanism that was different from that of choline deficiency. MTX increased the extent of fatty infiltration of the liver in choline deficient rats, and choline deficiency and MTX treatment damaged hepatocytes as measured by leakage of alanine aminotransferase activity. Our data are consistent with the hypothesis that the fatty infiltration of the liver associated with MTX treatment occurs because of a disturbance in choline metabolism.  相似文献   

5.
Methyltransferases are an important group of enzymes with diverse roles that include epigenetic gene regulation. The universal donor of methyl groups for methyltransferases is S-adenosylmethionine (AdoMet), which in most cells is synthesized using methyl groups carried by a derivative of folic acid. Another mechanism for AdoMet synthesis uses betaine as the methyl donor via the enzyme betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5), but it has been considered to be significant only in liver. Here, we show that mouse preimplantation embryos contain endogenous betaine; Bhmt mRNA is first expressed at the morula stage; BHMT is abundant at the blastocyst stage but not other preimplantation stages, and BHMT activity is similarly detectable in blastocyst homogenates but not those of two-cell or morula stage embryos. Knockdown of BHMT protein levels and reduction of enzyme activity using Bhmt-specific antisense morpholinos or a selective BHMT inhibitor resulted in decreased development of embryos to the blastocyst stage in vitro and a reduction in inner cell mass cell number in blastocysts. The detrimental effects of BHMT knockdown were fully rescued by the immediate methyl-carrying product of BHMT, methionine. A physiological role for betaine and BHMT in blastocyst viability was further indicated by increased fetal resorption following embryo transfer of BHMT knockdown blastocysts versus control. Thus, mouse blastocysts are unusual in being able to generate AdoMet not only by the ubiquitous folate-dependent mechanism but also from betaine metabolized by BHMT, likely a significant pool of methyl groups in blastocysts.  相似文献   

6.
Choline and C1 metabolism pathways intersect at the formation of methionine from homocysteine. Hepatic S-adenosylmethionine (AdoMet) concentrations are decreased in animals ingesting diets deficient in choline, and it has been suggested that this occurs because the availability of methionine limits AdoMet synthesis. If the above hypothesis is correct, changes in hepatic AdoMet concentrations should relate in some consistent manner to changes in hepatic methionine concentrations. Rats were fed on a choline-deficient or control diet for 1-42 days. Hepatic choline concentrations in control animals were 105 nmol/g, and decreased to 50% of control after the first 7 days on the choline-deficient diet. Hepatic methionine concentrations decreased by less than 20%, with most of this decrease occurring between days 3 and 7 of choline deficiency. Hepatic AdoMet concentrations decreased by 25% during the first week, and continued to decrease (in total, by over 60%) during each subsequent week during which animals consumed a choline-deficient diet. Hepatic S-adenosylhomocysteine (AdoHcy) concentrations increased by 50% when animals consumed a choline-deficient diet. AdoHcy is formed when AdoMet is utilized as a methyl donor. In summary, choline deficiency can deplete hepatic stores of AdoMet under dietary conditions that only minimally decrease the availability of methionine within liver. Thus decreased availability of methionine may not have been the only mechanism whereby choline deficiency lowers hepatic AdoMet concentrations. We suggest that increased utilization of AdoMet might also have occurred.  相似文献   

7.
Abstract: The ability of S -adenosyl- l -homocysteine (AdoHcy) to inhibit biologic transmethylation reactions in vitro has led us to explore the possibility of pharmacologically manipulating AdoHcy levels in vivo and examining the consequences of these alterations on the transmethylation of some biogenic amines. Swiss-Webster mice were injected intraperitoneally with different doses of adenosine (Ado) and d,l -homocysteine thiolactone (Hcy) and were killed at various times thereafter. S -Adenosyl- l -methionine (AdoMet) and AdoHcy concentrations were determined by using a modified isotope dilution-ion exchange chromatography-high pressure liquid chromatography technique sensitive to less than 10 pmol. Increasing doses of Ado + Hcy (50-1000 mg/kg of each) produced a dose-related increase in blood, liver, and brain AdoHcy levels. At a dose level of 200 mg/kg Ado + Hcy, AdoHcy levels were markedly elevated, with minimal concomitant perturbations of AdoMet. This elevation was maximal 40 min after giving Ado + Hcy, returning to control values within 6 h. Ado + Hcy treatment resulted in decreased activities of catechol- O -methyltransferase, histamine- N -methyltransferase, and AdoHcy hydrolase in vitro. The cerebral catabolism of intraventricularly administered [3H]histamine (HA) was decreased in a dose-related manner by Ado + Hcy treatment as evidenced by higher amounts of nonutilized [3H]HA in brain, concurrent decreases in [3H]methylhistamine formation, and decreases in the transmethylation conversion index. Steady state levels of HA also showed dose-related increases after Ado + Hcy treatment. It is concluded that injections of Ado + Hcy can markedly elevate AdoHcy levels in vivo , which can, in turn, decrease the rate of transmethylation reactions.  相似文献   

8.
Biological methylation reactions and homocysteine (Hcy) metabolism are intimately linked. In previous work, we have shown that phosphatidylethanolamine N-methyltransferase, an enzyme that methylates phosphatidylethanolamine to form phosphatidylcholine, plays a significant role in the regulation of plasma Hcy levels through an effect on methylation demand (Noga, A. A., Stead, L. M., Zhao, Y., Brosnan, M. E., Brosnan, J. T., and Vance, D. E. (2003) J. Biol. Chem. 278, 5952-5955). We have further investigated methylation demand and Hcy metabolism in liver-specific CTP:phosphocholine cytidylyltransferase-alpha (CTalpha) knockout mice, since flux through the phosphatidylethanolamine N-methyltransferase pathway is increased 2-fold to meet hepatic demand for phosphatidylcholine. Our data show that plasma Hcy is elevated by 20-40% in mice lacking hepatic CTalpha. CTalpha-deficient hepatocytes secrete 40% more Hcy into the medium than do control hepatocytes. Liver activity of betaine:homocysteine methyltransferase and methionine adenosyltransferase are elevated in the knockout mice as a mechanism for maintaining normal hepatic S-adenosylmethionine and S-adenosylhomocysteine levels. These data suggest that phospholipid methylation in the liver is a major consumer of AdoMet and a significant source of plasma Hcy.  相似文献   

9.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase, E.C. 3.3.1.1) catalyzes the metabolism of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine (Hcy) in mouse neuroblastoma N2a cells. AdoHcy hydrolase in N2a cells can be inhibited completely by adenosine dialdehyde (Ado dialdehyde) or neplanocin A. The inhibitory effects of Ado dialdehyde (2.5 μM) and neplanocin A (1 μM) on cellular AdoHcy hydrolase were time-dependent, with total enzyme inhibition occurring after 30 min and 15 min of incubation, respectively. The inhibition of AdoHcy hydrolase produced by Ado dialdehyde and neplanocin A persisted for up to 72 h of incubation, and was paralleled by a time-dependent increase in endogenous AdoHcy levels reaching a maximum 4-fold elevation after 8 h of incubation with Ado dialdehyde and an 11-fold increase in the neplanocin A-treated cells. This increase in AdoHcy levels produced a subsequent inhibition of S-adenosylmethionine (AdoMet)-dependent cellular methylations (e.g. protein carboxylmethylation (PCM), lipid methylation). In addition, neplanocin A was metabolically converted to the corresponding AdoMet analog, S-neplanocylmethionine (NepMet), in neuroblastoma N2a cells. NepMet reached maximum levels after 8 h of incubation of the cells with neplanocin A.  相似文献   

10.
11.
The effect of the purine analog 3-deazaadenosine (dzAdo) on the metabolism of sulfur-containing compounds was examined in hepatocytes. The uptake of exogenous methionine by the liver was not affected by the addition of dzAdo to the perfusate, while the intracellular concentrations of S-adenosyl-L-methionine (AdoMet) and S-adenosyl-L-homocysteine (AdoHcy) continued to increase as long as exogenous methionine was available. In addition, large amounts of 3-deazaadenosyl-L-homocysteine (dzAdoHcy) accumulated in the cell. The specific radioactivity of the carbon chain of dzAdoHcy was the same as that of AdoMet and AdoHcy. Consequently, an equivalent amount of homocysteine (Hcy) must have been generated via hydrolysis of AdoHcy. Free Hcy could not be detected either in the tissue or perfusate when dzAdo was present, while Hcy was excreted into the perfusate by control livers. Consequently, the AdoHcy and DzAdoHcy that accumulate in the cell not only function as inhibitors of methylation reactions, but serve as a trap for Hcy. This could result in methionine starvation and hence, inhibition of protein synthesis.  相似文献   

12.
A fraction of the viral mRNA synthesized in interferon-treated HeLa cells infected with vesicular stomatitis virus (VSV) lacks the 7-methyl group in the 5'-terminal guanosine of the cap; this mRNA is not associated with polyribosomes and does not bind to ribosomes in an assay for initiation of protein synthesis (de Ferra, F., and Baglioni, C. (1981) Virology 112, 426-435). To establish whether this defect in methylation is due to changes in the level of the methyl donor S-adenosylmethionine (AdoMet) and of its competitive inhibitor S-adenosylhomocysteine (AdoHcy), we measured the concentration of these compounds in HeLa cells treated with interferon. An increase in both AdoMet and AdoHcy was detected 3 to 6 h after addition of interferon. The level of these compounds increased gradually and in proportion to the interferon concentration used. With 125 reference units/ml of beta interferon, for example, the AdoHcy concentration increased more than 3-fold and that of AdoMet about 1.5-fold with a consequent change in the AdoHcy/AdoMet ratio. An increased AdoHcy/AdoMet ratio was also found in HeLa cells treated with pure alpha 2 interferon produced in Escherichia coli by recombinant DNA techniques. When the methylation of VSV mRNA was measured in assays carried out with permeabilized virions at the AdoHcy and AdoMet concentrations found in interferon-treated cells, a preferential inhibition of the viral (guanine-7-)methyltransferase activity was observed. Such an inhibition may account for the synthesis of VSV mRNA lacking the 7-methyl group of guanosine in the cap.  相似文献   

13.
14.
Methyltransferases use S-adenosylmethionine (AdoMet) as methyl group donor, forming S-adenosylhomocysteine (AdoHcy) and methylated substrates, including DNA and proteins. AdoHcy inhibits most methyltransferases. Accumulation of intracellular AdoHcy secondary to Hcy elevation elicits global DNA hypomethylation. We aimed at determining the extent at which protein arginine methylation status is affected by accumulation of intracellular AdoHcy. AdoHcy accumulation in human umbilical vein endothelial cells was induced by inhibition of AdoHcy hydrolase by adenosine-2,3-dialdehyde (AdOx). As a measure of protein arginine methylation status, the levels of monomethylarginine (MMA) and asymmetric and symmetric dimethylated arginine residues (ADMA and SDMA, respectively) in cell protein hydrolysates were measured by HPLC. A 10% decrease was observed at a 2.5-fold increase of intracellular AdoHcy. Western blotting revealed that the translational levels of the main enzymes catalyzing protein arginine methylation, protein arginine methyl transferases (PRMTs) 1 and 5, were not affected by AdoHcy accumulation. Global DNA methylation status was evaluated by measuring 5-methylcytosine and total cytosine concentrations in DNA hydrolysates by LC-MS/MS. DNA methylation decreased by 10% only when intracellular AdoHcy concentration accumulated to 6-fold of its basal value. In conclusion, our results indicate that protein arginine methylation is more sensitive to AdoHcy accumulation than DNA methylation, pinpointing a possible new player in methylation-related pathology.  相似文献   

15.
L-Isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form. In the course of this reaction, PCMT1 converts the methyl donor S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Due to the high level of activity of this enzyme, particularly in the brain, it seemed of interest to investigate whether the lack of PCMT1 activity might alter the concentrations of these small molecules. AdoMet and AdoHcy were measured in mice lacking PCMT1 (Pcmt1-/-), as well as in their heterozygous (Pcmt1+/-) and wild type (Pcmt1+/+) littermates. Higher levels of AdoMet and lower levels of AdoHcy were found in the brains of Pcmt1-/- mice, and to a lesser extent in Pcmt1+/- mice, when compared with Pcmt1+/+ mice. In addition, these levels appear to be most significantly altered in the hippocampus of the Pcmt1-/- mice. The changes in the AdoMet/AdoHcy ratio could not be attributed to increases in the activities of methionine adenosyltransferase II or S-adenosylhomocysteine hydrolase in the brain tissue of these mice. Because changes in the AdoMet/AdoHcy ratio could potentially alter the overall excitatory state of the brain, this effect may play a role in the progressive epilepsy seen in the Pcmt1-/- mice.  相似文献   

16.
17.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

18.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   

19.
Aim of this article is to review the topic of epigenetic control of gene expression, especially regarding DNA methylation, in chronic kidney disease and uremia. Hyperhomocysteinemia is considered an independent cardiovascular risk factor, although the most recent intervention studies utilizing folic acid are negative. The accumulation of homocysteine in blood leads to an intracellular increase of S-adenosylhomocysteine (AdoHcy), a powerful competitive methyltransferase inhibitor, which is itself considered a predictor of cardiovascular events. The extent of methylation inhibition of each individual methyltransferase depends on the methyl donor S-adenosylmethionine (AdoMet) availability, on the [AdoMet]/[AdoHcy] ratio, and on the individual Km value for AdoMet and Ki for AdoHcy. DNA methyltransferases are among the principal targets of hyperhomocysteinemia, as studies in several cell culture and animal models, as well as in humans, almost unequivocally show. In vivo, DNA methylation may be also influenced by various factors in different tissues, for example by rate of cell growth, folate status, etc. and importantly inflammation.  相似文献   

20.
Aphanothece halophytica, a halophilic cyanobacterium capable of growing in saturated NaCl, accumulates high intracellular concentrations of glycinebetaine in response to increasing environmental NaCl. In this organism, intracellular levels of K+ rise dramatically with increasing external NaCl before an increase in glycinebetaine can be detected. Glycinebetaine synthesis requires three S-adenosylmethionine (AdoMet)-mediated transmethylations; each transmethylation reaction generates one molecule of the transmethylation inhibitor S-adenosylhomocysteine (AdoHcy). Thus, glycinebetaine synthesis should require continued removal of AdoHcy. In A. halophytica, catabolism of AdoHcy was shown to occur via the reversible reaction catalyzed by AdoHcy hydrolase (EC 3.3.1.1). Activity of AdoHcy hydrolase in the direction of synthesis of AdoHcy was inhibited by 0.4 M KCl in this organism. On the other hand, activity of AdoHcy hydrolase in the direction of AdoHcy hydrolysis was unaffected by 0.4 M KCl. Glycinebetaine increased synthesis of AdoHcy in the presence of 0.4 KCl, but had no effect on AdoHcy hydrolysis. Based upon these results, a mechanism is proposed for the regulation of glycinebetaine synthesis by K+ and glycinebetaine in A. halophytica. According to this mechanism, the regulatory response would be initiated by a K+-induced shift in the AdoMet/AdoHcy ratio.Abbreviations AdoMet S-adenosylmethionine - AdoHcy S-adenosyl homocysteine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号