首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to provide data about in vivo tissue distribution and excretion of diphenyl diselenide ((PhSe)2) in rats and mice through determination of selenium levels in different biological samples. (PhSe)2 (500?mg/kg, dissolved in canola oil) was administered to animals once a day per oral. After this, mice and rats were housed in metabolic cages (one animal per cage) and urine and feces were collected at specific times after treatment. Three to five animals per group (for each time-point) were anesthetized and blood samples were collected at 0 and 30?min, 24?h, at day 5, 15, and 30 after (PhSe)2 administration. The plasma and red blood cells were separated. Brain, liver, lungs, kidneys, and adipose tissue were also collected. The determination of selenium levels was performed by inductively coupled plasma atomic emission spectrometry. The main results indicate that: (1) urine is an important route of excretion of selenium originated from (PhSe)2 in mice and rats; (2) a large amount of (PhSe)2 or some of its metabolites are stored in fat; (3) the content of selenium found in plasma was low; and (4) liver and kidneys are the tissues with high amounts of selenium.  相似文献   

2.
The involvement of non-enzymatic antioxidant defenses in the protective effect of diphenyl diselenide (PhSe)2 on testicular damage caused by cadmium in mice was investigated. Mice received a single dose of CdCl2 (5 mg/kg, intraperitoneally). Thirty minutes after the CdCl2 injection, they received a single oral dose of (PhSe)2 (400 μmol/kg). Twenty-four hours after CdCl2 administration, blood samples were collected and mice were killed and had their testes dissected. Parameters in plasma (aspartate (AST) and alanine (ALT) aminotransferases and lactato dehydrogenase (LDH) activities as well as creatinine levels) were determined. The activity of δ-aminolevulinate dehydratase (δ-ALA-D), the levels of thiobarbituric acid-reactive substances (TBARS), ascorbic acid and nonprotein thiols (NPSH) and histological analysis were determined in collected samples. Results demonstrated that (PhSe)2 protected against toxicity induced by CdCl2 on δ-ALA-D activity, ascorbic acid and NPSH levels. (PhSe)2 protected against the increase in plasma AST, ALT and LDH activities caused by CdCl2. Testes of mice exposed to CdCl2 showed marked histopathological alterations that were ameliorated by administration of (PhSe)2. (PhSe)2 protected against toxicity induced by CdCl2 in testes of mice. Ascorbic acid and NPSH, non-enzymatic antioxidant defenses, are involved in the protective effect of (PhSe)2 against testicular damage caused by CdCl2 in mice.  相似文献   

3.
Age independently predicts poor outcome in a variety of medical settings, including sepsis, trauma, severe burns, and surgery. Because these conditions are associated with oxidative stress, we hypothesized that the capacity to constrain oxidative insult diminishes with age, leading to more extensive oxidative damage during trauma. To test this hypothesis, we used suprasystolic inflation of an arm blood pressure cuff to safely induce localized forearm ischemia/reperfusion (I/R) and quantified plasma F2-isoprostane (IsoP) levels in serial blood samples. Before I/R, IsoP levels were similar in young (20–33 years) and older adults (62–81 years). After I/R challenge, the magnitude and duration of increased IsoP levels was significantly greater in older adults. Because aging is associated with declining levels of sex hormones that contribute to the regulation of antioxidant enzyme expression, we then examined the response to I/R in older women receiving hormone replacement therapy and found that these women did not manifest the amplified IsoP response found in untreated older women. These findings demonstrate that aging impairs the ability to restrain oxidative damage after an acute insult, which may contribute to the increased vulnerability of older adults to traumatic conditions and establishes a useful method to identify effective interventions to ameliorate this deficiency.  相似文献   

4.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

5.
Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr?/?) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr?/? mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr?/? mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.  相似文献   

6.
Organoseleno-compounds have been investigated for its beneficial effects against methylmercury toxicity. In this way, diphenyl diselenide (PhSe)2 was demonstrated to decrease Hg accumulation in mice, protect against MeHg-induced mitochondrial dysfunction, and protect against the overall toxicity of this metal. In the present study we aimed to investigate if co-treatment with (PhSe)2 and MeHg could decrease accumulation of Hg in liver slices of rats. Rat liver slices were co-treated with (PhSe)2 (0.5; 5 µM) and/or MeHg (25 µM) for 30 min at 37 °C and Se and Hg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) in the slices homogenate, P1 fraction, mitochondria and incubation medium. Co-treatment with (PhSe)2 and MeHg did not significantly alter Se levels in any of the samples when compared with compounds alone. In addition, co-treatment with (PhSe)2 and MeHg did not decrease Hg levels in any of the samples tested, although, co-incubation significantly increased Hg levels in homogenate. We suggest here that (PhSe)2 could exert its previously demonstrated protective effects not by reducing MeHg levels, but forming a complex with MeHg avoiding it to bind to critical molecules in cell.  相似文献   

7.
Interest in organoselenide chemistry and biochemistry has increased in the past three decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of the organic selenium compound diphenyl diselenide (PhSe)2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Our group has previously demonstrated that the oral and repeated administration (21 days) of MeHg (40 mg/L) induced MeHg brain accumulation at toxic concentrations, and a pattern of severe cortical and cerebellar biochemical and behavioral. In order to assess neurotoxicity, the neurochemical parameters, namely, mitochondrial complexes I, II, II–III and IV, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, the content of thiobarbituric acid-reactive substances (TBA-RS), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF), as well as, metal deposition were investigated in mouse cerebral cortex. Cortical neurotoxicity induced by brain MeHg deposition was characterized by the reduction of complexes I, II, and IV activities, reduction of GPx and increased GR activities, increased TBA-RS and 8-OHdG content, and reduced BDNF levels. The daily treatment with (PhSe)2 was able to counteract the inhibitory effect of MeHg on mitochondrial activities, the increased oxidative stress parameters, TBA-RS and 8-OHdG levels, and the reduction of BDNF content. The observed protective (PhSe)2 effect could be linked to its antioxidant properties and/or its ability to reduce MeHg deposition in brain, which was here histochemically corroborated. Altogether, these data indicate that (PhSe)2 could be consider as a neuroprotectant compound to be tested under neurotoxicity.  相似文献   

8.
9.
Angiotensin IV (Ang IV) is formed by aminopeptidase N from Ang III by removing the first N-terminal amino acid. Previously, we reported that Ang III has some cardioprotective effects against global ischemia in Langendorff heart. However, it is not clear whether Ang IV has cardioprotective effects. The aim of the present study was to evaluate the effect of Ang IV on myocardial ischemia-reperfusion (I/R) injury in rats. Before ischemia, male Sprague-Dawley rats received Ang IV (1 mg/kg/day) for 3 days. Anesthetized rats were subjected to 45 min of ischemia by ligation of left anterior descending coronary artery followed by reperfusion and then, sacrificed 1 day or 1 week after reperfusion. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations, and infarct size were measured. Quantitative analysis of apoptotic and inflammatory proteins in ventricles were performed using Western blotting. Pretreatment with Ang IV attenuated I/R-induced increases in plasma CK and LDH levels, and infarct size, which were blunted by Ang IV receptor (AT4R) antagonist and but not by antagonist for AT1R, AT2R, or Mas receptor. I/R increased Bax, caspase-3 and caspase-9 protein levels, and decreased Bcl-2 protein level in ventricles, which were blunted by Ang IV. I/R-induced increases in TNF-α, MMP-9, and VCAM-1 protein levels in ventricles were also blunted by Ang IV. Ang IV increased the phosphorylation of Akt and mTOR. These effects were attenuated by co-treatment with AT4R antagonist or inhibitors of downstream signaling pathway. Myocardial dysfunction after reperfusion was improved by Ang IV. These results suggest that Ang IV has cardioprotective effect against I/R injury by inhibiting apoptosis via AT4R and PI3K-Akt-mTOR pathway.  相似文献   

10.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.  相似文献   

12.
BackgroundOxidative stress and frequently unwanted alterations in mitochondrial structure and function are key aspects of the pathological cascade in transient focal cerebral ischemia. Chikusetsu saponin V (CHS V), a major component of saponins from Panax japonicas, can attenuate H2O2-induced oxidative stress in SH-SY5Y cells.PurposeThe aim of the present study was to investigate the neuroprotective effects and the possible underlying mechanism of CHS V on transient focal cerebral ischemia/reperfusion.MethodsMice with middle cerebral artery occlusion (MCAO) and cultured cortical neurons exposed to oxygen glucose deprivation (OGD) were used as in vivo and in vitro models of cerebral ischemia, respectively. The neurobehavioral scores, infarction volumes, H&E staining and some antioxidant levels in the brain were evaluated. The occurrence of neuronal death was estimated. Total and mitochondrial reactive oxygen species (ROS) levels, as well as mitochondrial potential were measured using flow cytometry analysis. Mitochondrial structure and respiratory activity were also examined. Protein levels were investigated by western blotting and immunohistochemistry.ResultsCHS V effectively attenuated cerebral ischemia/reperfusion (CI/R) injury, including improving neurological deficits, shrinking infarct volume and reducing the number of apoptotic cells. Furthermore, CHS V treatment remarkably increased antioxidant levels and reduced ROS levels and mitochondrial damage by enhancing the expression and deacetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by activating AMPK and SIRT-1, respectively.ConclusionOur data demonstrated that CHS V prevented CI/R injury by suppressing oxidative stress and mitochondrial damage through the modulation of PGC-1α with AMPK and SIRT-1.  相似文献   

13.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

14.
Inflammation and apoptosis play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that vagus nerve stimulation (VNS) following focal cerebral ischemia and reperfusion (I/R) may be neuroprotective by limiting infarct size. However, the underlying molecular mechanisms remain unclear. In this study, we investigated whether the protective effects of VNS in acute cerebral I/R injury were associated with anti-inflammatory and anti-apoptotic processes. Male Sprague-Dawley (SD) rats underwent VNS at 30 min after focal cerebral I/R surgery. Twenty-four h after reperfusion, neurological deficit scores, infarct volume, and neuronal apoptosis were evaluated. In addition, the levels of pro-inflammatory cytokines were detected using enzyme-linked immune sorbent assay (ELISA), and immunofluorescence staining for the endogenous “cholinergic anti-inflammatory pathway” was also performed. The protein expression of a7 nicotinic acetylcholine receptor (a7nAchR), phosphorylated Akt (p-Akt), and cleaved caspase 3 in ischemic penumbra were determined with Western blot analysis. I/R rats treated with VNS (I/R+VNS) had significantly better neurological deficit scores, reduced cerebral infarct volume, and decreased number of TdT mediated dUTP nick end labeling (TUNEL) positive cells. Furthermore, in the ischemic penumbra of the I/R+VNS group, the levels of pro-inflammatory cytokines and cleaved caspase 3 protein were significantly decreased, and the levels of a7nAchR and phosphorylated Akt were significantly increased relative to the I/R alone group. These results indicate that VNS is neuroprotective in acute cerebral I/R injury by suppressing inflammation and apoptosis via activation of cholinergic and a7nAchR/Akt pathways.  相似文献   

15.
Sulfur dioxide (SO2) is naturally synthesized by glutamate‐oxaloacetate transaminase (GOT) from l ‐cysteine in mammalian cells. We aim to investigate the role of SO2 in inflammation in acute lung injury (ALI) following limb ischemia/reperfusion (I/R). Male Wistar rats were subjected to limb I/R and were injected with saline, GOT inhibitor hydroxamate (HDX, 0.47 mmol/kg), or the SO2 donor Na2SO3/NaHSO3 (0.54 mmol/kg/0.18 mmol/kg). Compared with the sham operation, the plasma SO2 levels were significantly decreased by limb I/R treatment. In addition, SO2 concentration and GOT activity in the lung tissue were also reduced in ALI. The occurrence of ALI following limb I/R can be prevented by Na2SO3/NaHSO3 treatment, whereas it can be significantly aggravated by HDX. The plasma IL‐1β, IL‐6, and IL‐10 levels were consistent with myeloperoxidase activity and inflammation in lung tissue. In conclusion, our data suggest that downregulation of endogenous SO2 production might be involved in pathogenesis of ALI following limb I/R in rats. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:389‐397, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21492  相似文献   

16.
Abstract

The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q9 were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.  相似文献   

17.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

18.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

19.

Background

Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats.

Methods

Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected.

Results

Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine.

Conclusions

These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R.  相似文献   

20.
Aim: Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. Methods: I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60?mg/kg) were given intraperitoneally, 24?h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. Results: I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24?h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Conclusion: Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号