首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statistical consistency in phylogenetics has traditionally referred to the accuracy of estimating phylogenetic parameters for a fixed number of species as we increase the number of characters. However, it is also useful to consider a dual type of statistical consistency where we increase the number of species, rather than characters. This raises some basic questions: what can we learn about the evolutionary process as we increase the number of species? In particular, does having more species allow us to infer the ancestral state of characters accurately? This question is particularly important when sequence evolution varies in a complex way from character to character, as methods applicable for i.i.d. models may no longer be valid. In this paper, we assemble a collection of results to analyse various approaches for inferring ancestral information with increasing accuracy as the number of taxa increases.  相似文献   

2.
Phylogenetic relationships and taxonomic distinctiveness of closely related species and subspecies are most accurately inferred from data derived from multiple independent loci. Here, we apply several approaches for understanding species-level relationships using data from 18 nuclear DNA loci and 1 mitochondrial DNA locus within currently described species and subspecies of Sistrurus rattlesnakes. Collectively, these methods provide evidence that a currently described species, the massasauga rattlesnake (Sistrurus catenatus), consists of two well-supported clades, one composed of the two western subspecies (S. c. tergeminus and S. c. edwardsii) and the other the eastern subspecies (S. c. catenatus). Within pigmy rattlesnakes (S. miliarius), however, there is not strong support across methods for any particular grouping at the subspecific level. Monophyly based tests for taxonomic distinctiveness show evidence for distinctiveness of all subspecies but this support is strongest by far for the S. c. catenatus clade. Because support for the distinctiveness of S. c. catenatus is both strong and consistent across methods, and due to its morphological distinctiveness and allopatric distribution, we suggest that this subspecies be elevated to full species status, which has significant conservation implications. Finally, most divergence time estimates based upon a fossil-calibrated species tree are > 50% younger than those from a concatenated gene tree analysis and suggest that an active period of speciation within Sistrurus occurred within the late Pliocene/Pleistocene eras.  相似文献   

3.
Bayesian estimation of ancestral character states on phylogenies   总被引:17,自引:0,他引:17  
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.  相似文献   

4.
The resolution of higher level phylogeny of the coleoid cephalopods (octopuses, squids, and cuttlefishes) has been hindered by homoplasy among morphological characters in conjunction with a very poor fossil record. Initial molecular studies, based primarily on small fragments of single mitochondrial genes, have produced little resolution of the deep relationships amongst coleoid cephalopod families. The present study investigated this issue using 3415 base pairs (bp) from three nuclear genes (octopine dehydrogenase, pax-6, and rhodopsin) and three mitochondrial genes (12S rDNA, 16S rDNA, and cytochrome oxidase I) from a total of 35 species (including representatives of each of the higher level taxa). Bayesian analyses were conducted on mitochondrial and nuclear genes separately and also all six genes together. Separate analyses were conducted with the data partitioned by gene, codon/rDNA, gene+codon/rDNA or not partitioned at all. In the majority of analyses partitioning the data by gene+codon was the appropriate model with partitioning by codon the second most selected model. In some instances the topology varied according to the model used. Relatively high posterior probabilities and high levels of congruence were present between the topologies resulting from the analysis of all Octopodiform (octopuses and vampire "squid") taxa for all six genes, and independently for the datasets of mitochondrial and nuclear genes. In contrast, the highest levels of resolution within the Decapodiformes (squids and cuttlefishes) resulted from analysis of nuclear genes alone. Different higher level Decapodiform topologies were obtained through the analysis of only the 1st+2nd codon positions of nuclear genes and of all three codon positions. It is notable that there is strong evidence of saturation among the 3rd codon positions within the Decapodiformes and this may contribute spurious signal. The results suggest that the Decapodiformes may have radiated earlier and/or had faster rates of evolution than the Octopodiformes. The following taxonomic conclusions are drawn from our analyses: (1) the order Octopoda and suborders Cirrata, Incirrata, and Oegopsida are monophyletic groups; (2) the family Spirulidae (Ram's horn squids) are the sister taxon to the family Sepiidae (cuttlefishes); (3) the family Octopodidae, as currently defined, is paraphyletic; (4) the superfamily Argonautoidea are basal within the suborder Incirrata; and (5) the benthic octopus genera Benthoctopus and Enteroctopus are sister taxa.  相似文献   

5.
We prove that it is impossible to reconstruct ancestral data at the root of "deep" phylogenetic trees with high mutation rates. Moreover, we prove that it is impossible to reconstruct the topology of "deep" trees with high mutation rates from a number of characters smaller than a low-degree polynomial in the number of leaves. Our impossibility results hold for all reconstruction methods. The proofs apply tools from information theory and percolation theory.  相似文献   

6.
Molecular phylogenies in angiosperm evolution   总被引:8,自引:0,他引:8  
We have cloned and sequenced cDNAs for the glyceraldehyde-3-phosphate dehydrogenase of glycolysis, gapC, from a bryophyte, a gymnosperm, and three angiosperms. Phylogenetic analyses are presented for these data in the context of other gapC sequences and in parallel with published nucleotide sequences for the chloroplast encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL). Relative-rate tests were performed for these genes in order to assess variation in substitution rate for coding regions, along individual plant lineages studied. The results of both gene analyses suggest that the deepest dichotomy within the angiosperms separates not magnoliids from remaining angiosperms, but monocotyledons from dicotyledons, in sharp contrast to prediction from the Euanthial theory for angiosperm evolution. Furthermore, these chloroplast and nuclear sequence data taken together suggest that the separation of monocotyledonous and dicotyledonous lineages took place in late Carboniferous times [approximately 300 Myr before the present (Mybp)]. This date would exceed but be compatible with the late-Triassic (approximately 220 Mybp) occurrence of fossil reproductive structures of the primitive angiosperm Sanmiguelia lewisii.   相似文献   

7.
We perform Bayesian phylogenetic analyses on cytochrome b sequences from 264 of the 290 extant cetartiodactyl mammals (whales plus even-toed ungulates) and two recently extinct species, the 'Mouse Goat' and the 'Irish Elk'. Previous primary analyses have included only a small portion of the species diversity within Cetartiodactyla, while a complete supertree analysis lacks resolution and branch lengths limiting its utility for comparative studies. The benefits of using a single-gene approach include rapid phylogenetic estimates for a large number of species. However, single-gene phylogenies often differ dramatically from studies involving multiple datasets suggesting that they often are unreliable. However, based on recovery of benchmark clades-clades supported in prior studies based on multiple independent datasets-and recovery of undisputed traditional taxonomic groups, Cytb performs extraordinarily well in resolving cetartiodactyl phylogeny when taxon sampling is dense. Missing data, however, (taxa with partial sequences) can compromise phylogenetic accuracy, suggesting a tradeoff between the benefits of adding taxa and introducing question marks. In the full data, a few species with a short sequences appear misplaced, however, sequence length alone seems a poor predictor of this phenomenon as other taxa with equally short sequences were not conspicuously misplaced. Although we recommend awaiting a better supported phylogeny based on more character data to reconsider classification and taxonomy within Cetartiodactyla, the new phylogenetic hypotheses provided here represent the currently best available tool for comparative species-level studies within this group. Cytb has been sequenced for a large percentage of mammals and appears to be a reliable phylogenetic marker as long as taxon sampling is dense. Therefore, an opportunity exists now to reconstruct detailed phylogenies of most of the major mammalian clades to rapidly provide much needed tools for species-level comparative studies.  相似文献   

8.
Horseshoe crabs are marine invertebrates well known for their exceptionally low rates of diversification during their entire evolutionary history. Despite the low species diversity in the group, the phylogenetic relationships among the extant species, especially among the three Asian species are still unresolved. Here we apply a new set of molecular genetic data in combination with a wide geographic sampling of the intra-specific diversity to reinvestigate the evolutionary history among the four living limulid xiphosurans. Our analysis of the intraspecific diversity reveals low levels of connectivity among Carcinoscorpius rotundicauda lineages, which can be explained by the estuarine-bound ecology of this species. Moreover, a clear genetic break across the Thai-Malay Peninsula suggests the presence of cryptic species in C. rotundicauda. The limulid phylogeny finds strong support for a monophyletic genus Tachypleus and a diversification of the three Asian species during the Paleogene period, with speciation events well separated in time by several million years. The tree topology suggests that the three Asian species originated in central South East Asia from a marine stem group that inhabited the shallow coastal waters between the Andaman Sea, Vietnam, and Borneo. In this region C. rotundicauda probably separated from the Tachypleus stem group by invading estuarine habitats, while Tachypleus tridentatus most likely migrated northeast along the Southern coast of China and towards Japan.  相似文献   

9.
Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).  相似文献   

10.
Ultrastructural and molecular phylogenetic data suggest that dinoflagellates diverged as a lineage possibly as early as the Precambrian. However, the fossil record is problematic before the Mesozoic. From the mid Triassic, though, the fossil record of dinoflagellates is a rich source of information on Mesozoic-Cenozoic dinoflagellates, especially the gonyaulacoids and peridinioids. From the sequence of appearance of species and tabulation types and the impression of early morphological experimentation and later stabilization, the early Mesozoic radiation of dinoflagellates appears to be a real evolutionary event: indeed, dinoflagellate morphology as we know it today may originate in that event. This would explain why it is so difficult to interpret earlier fossils as dinoflagellates. However, that the dinoflagellate lineage existed in some form in the pre-Mesozoic is supported by biogeochemical data, early results of which indicate that certain early Paleozoic acanthomorph acritarchs may belong to the lineage.

A surprising degree of consistency is observed between ultrastructural (including tabulational), coarse biochemical and molecular sequence data. For example, sequence data provided by small subunit (SSU) rRNA support the hypothesis of progressive loss of histones within the dinoflagellates. Gymnodinioids have long been considered to be polyphyletic but are thought of generally as forerunners to the strongly thecate groups such as gonyaulacoids and peridinioids. In molecular trees they appear in both early-derived and late-derived positions, but mostly the latter. SSU data clearly support the gonyaulacoid/peridinioid ordinal separation, as does the fossil record. Prorocentroids are now thought to be the among the most derived dinoflagellates (and presumably the morphologically similar dinophysoids), but SSU sequences have so far failed to resolve the relationships of most gymnodinioids, peridinioids and prorocentroids (the so-called GPP complex) to one another. However, they do suggest the origin of prorocentroids from peridinioids rather than gonyaulacoids and that gymnodinioids probably had several origins.  相似文献   

11.
Phylogenies underpin comparative biology as high-utility tools to test evolutionary and biogeographic hypotheses, inform on conservation strategies, and reveal the age and evolutionary histories of traits and lineages. As tools, most powerful are those phylogenies that contain all, or nearly all, of the taxa of a given group. Despite their obvious utility, such phylogenies, other than summary ‘supertrees’, are currently lacking for most mammalian orders, including the order Carnivora. Carnivora consists of about 270 extant species including most of the world’s large terrestrial predators (e.g., the big cats, wolves, bears), as well as many of man’s favorite wild (panda, cheetah, tiger) and domesticated animals (dog, cat). Distributed globally, carnivores are highly diverse ecologically, having occupied all major habitat types on the planet and being diverse in traits such as sociality, communication, body/brain size, and foraging ecology. Thus, numerous studies continue to address comparative questions within the order, highlighting the need for a detailed species-level phylogeny. Here we present a phylogeny of Carnivora that increases taxon sampling density from 28% in the most detailed primary-data study to date, to 82% containing 243 taxa (222 extant species, 17 subspecies). In addition to extant species, we sampled four extinct species: American cheetah, saber-toothed cat, cave bear and the giant short-faced bear. Bayesian analysis of cytochrome b sequences data-mined from GenBank results in a phylogenetic hypothesis that is largely congruent with prior studies based on fewer taxa but more characters. We find support for the monophyly of Carnivora, its major division into Caniformia and Feliformia, and for all but one family within the order. The only exception is the placement of the kinkajou outside Procyonidae, however, prior studies have already cast doubt on its family placement. In contrast, at the subfamily and genus level, our results indicate numerous problems with current classification. Our results also propose new, controversial hypotheses, such as the possible placement of the red panda (Ailuridae) sister to canids (Canidae). Our results confirm previous findings suggesting that the dog was domesticated from the Eurasian wolf (Canis lupus lupus) and are congruent with the Near East domestication of the cat. In sum, this study presents the most detailed species-level phylogeny of Carnivora to date and a much needed tool for comparative studies of carnivoran species. To demonstrate one such use, we perform a phylogenetic analysis of evolutionary distinctiveness (EDGE), which can be used to help establish conservation priorities. According with those criteria, and under one of the many possible sets of parameters, the highest priority Carnivora species for conservation of evolutionary diversity include: monk seals, giant and red panda, giant otter, otter civet, Owston’s palm civet, sea otter, Liberian mongoose, spectacled bear, walrus, binturong, and the fossa.  相似文献   

12.
Hawaiian tree snails in the endemic subfamily Achatinellinae display a staggering variety of shell colors and banding patterns. Despite numerous attempts to classify this morphological variation, a conclusive phylogeny has not been proposed. To improve conservation efforts, we sought to better understand the species identities and phylogenetic relationships among the extant species of Achatinella and Partulina using partial mitochondrial 16S ribosomal DNA sequences. The reconstructed phylogeny showed a high degree of support for more recent branches, but gave little support to deeper nodes. The most confident branches challenge previous systematic arrangements of these snails, grouping species that previously had been placed into different subgenera. High levels of sequence divergence within some species may reflect the long-term isolation of subpopulations. Rapid rates of sequence divergence may have saturated base substitutions and contributed to the lack of resolution of higher-order relationships. We did not find support for the monophyly of the Achatinella species, nor thus for a single colonization of Oahu from Maui Nui.  相似文献   

13.
The carotenoids constitute the most widespread class of pigments in nature. Most previous work has concentrated on the identification and characterization of their chemical physical properties and bioavailability. In recent years, significant amounts of research have been conducted in an attempt to analyze the genes and the molecular regulation of the genes involved in the biosynthesis of carotenoids. However, it is important not to lose sight of the early evolution of carotenoid biosynthesis. One of the major obstacles in understanding the evolution of the respective enzymes and their patterns of selection is a lack of a well-supported phylogenic analysis. In the present research, a major long-term objective was to provide a clearer picture of the evolutionary history of genes, together with an evaluation of the patterns of selection in algae. These phylogenies will be important in studies characterizing the evolution of algae. The gene sequences of the enzymes involved in the major steps of the carotenoid biosynthetic pathway in algae (cyanobacteria, rhofophyta, chlorophyta) have been analyzed. Phylogenetic relationships among protein-coding DNA sequences were reconstructed by neighbor-joining (NJ) analysis for the respective carotenoid biosynthetic pathway genes (crt) in algae. The analysis also contains an estimation of the rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)), synonymous nucleotide substitution per synonymous site (d(S)), and the ratio of nonsynonmous (d(N)/d(S)) for the test of selection patterns. The phylogenetic trees show that the taxa of some genera have a closer evolutionary relationship with other genera in some gene sequences, which suggests a common ancient origin and that lateral gene transfer has occurred among unrelated genera. The d(N) values of crt genes in the early pathway are relatively low, while those of the following steps are slightly higher, while the d(N) values of crt genes in chlorophyta are higher than those in cyanobacteria. Most of the d(N)/d(S) values exceed 1. The phylogenetic analysis revealed that lateral gene transfer may have taken place across algal genomes and the d(N) values suggest that most of the early crt genes are well conserved compared to the later crt genes. Furthermore, d(N) values also revealed that the crt genes of chlorophyta are more evolutionary than cyanobacteria. The amino acids' changes are mostly adaptive evolution under the influence of positive diversity selection.  相似文献   

14.

Background

The rapid accumulation of whole-genome data has renewed interest in the study of using gene-order data for phylogenetic analyses and ancestral reconstruction. Current software and web servers typically do not support duplication and loss events along with rearrangements.

Results

MLGO (Maximum Likelihood for Gene-Order Analysis) is a web tool for the reconstruction of phylogeny and/or ancestral genomes from gene-order data. MLGO is based on likelihood computation and shows advantages over existing methods in terms of accuracy, scalability and flexibility.

Conclusions

To the best of our knowledge, it is the first web tool for analysis of large-scale genomic changes including not only rearrangements but also gene insertions, deletions and duplications. The web tool is available from http://www.geneorder.org/server.php.  相似文献   

15.

Background

Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions.

Results

We present a computational method, ADseq, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADseq provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADseq to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes.

Conclusions

We demonstrate the method’s ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.
  相似文献   

16.
Evolutionary theory has gained tremendous insight from studies of adaptive radiations. High rates of speciation, morphological divergence, and hybridization, combined with low sequence variability, however, have prevented phylogenetic reconstruction for many radiations. The Hawaiian honeycreepers are an exceptional adaptive radiation, with high phenotypic diversity and speciation that occurred within the geologically constrained setting of the Hawaiian Islands. Here we analyze a new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes that resolves the Hawaiian honeycreeper phylogeny. We show that they are a sister taxon to Eurasian rosefinches (Carpodacus) and probably came to Hawaii from Asia. We use island ages to calibrate DNA substitution rates, which vary substantially among gene regions, and calculate divergence times, showing that the radiation began roughly when the oldest of the current large Hawaiian Islands (Kauai and Niihau) formed, ~5.7 million years ago (mya). We show that most of the lineages that gave rise to distinctive morphologies diverged after Oahu emerged (4.0-3.7 mya) but before the formation of Maui and adjacent islands (2.4-1.9 mya). Thus, the formation of Oahu, and subsequent cycles of colonization and speciation between Kauai and Oahu, played key roles in generating the morphological diversity of the extant honeycreepers.  相似文献   

17.
Organismal phylogeny depends on cell division, stasis, mutational divergence, cell mergers (by sex or symbiogenesis), lateral gene transfer and death. The tree of life is a useful metaphor for organismal genealogical history provided we recognize that branches sometimes fuse. Hennigian cladistics emphasizes only lineage splitting, ignoring most other major phylogenetic processes. Though methodologically useful it has been conceptually confusing and harmed taxonomy, especially in mistakenly opposing ancestral (paraphyletic) taxa. The history of life involved about 10 really major innovations in cell structure. In membrane topology, there were five successive kinds of cell: (i) negibacteria, with two bounding membranes, (ii) unibacteria, with one bounding and no internal membranes, (iii) eukaryotes with endomembranes and mitochondria, (iv) plants with chloroplasts and (v) finally, chromists with plastids inside the rough endoplasmic reticulum. Membrane chemistry divides negibacteria into the more advanced Glycobacteria (e.g. Cyanobacteria and Proteobacteria) with outer membrane lipolysaccharide and primitive Eobacteria without lipopolysaccharide (deserving intenser study). It also divides unibacteria into posibacteria, ancestors of eukaryotes, and archaebacteria—the sisters (not ancestors) of eukaryotes and the youngest bacterial phylum. Anaerobic eobacteria, oxygenic cyanobacteria, desiccation-resistant posibacteria and finally neomura (eukaryotes plus archaebacteria) successively transformed Earth. Accidents and organizational constraints are as important as adaptiveness in body plan evolution.  相似文献   

18.
Molecular phylogenies of figs and their pollinator wasps   总被引:6,自引:0,他引:6  
Abstract. We collected and analysed nucleotide sequence and protein electrophoretic data in order to estimate phylogenies of figs and fig-pollinating wasps at several taxonomic scales. The relatively conserved chloroplast gene coding rbCl allowed the estimation of the taxonomic position of Ficus relative to other genera within the Moraceae. Further, in conjunction with chloroplast tRNA spacer genes, rbcL sequences allowed the partial resolution of the phylogenetic associations of fig species from different parts of the world with representatives from all the recognized subgenera of Ficus . The phylogeny of the corresponding wasp species that pollinate most of those taxa was estimated using mitochondrial COI-COII and 12S ribosomal genes. At a fine scale, the phylogenies of species within two subgenera of figs growing in Panama ( Urostigma , and Pharmacosycea) were estimated by using protein electrophoretic data. The phylogeny of the corresponding pollinator wasp species was estimated using COII sequence data. Although we need to extend the taxa sampled and augment the molecular database, the host and pollinator phylogenies show a high degree of congruence and the results support the predominance of strict-sense co-evolution between figs and their pollinator wasps at both global and fine scales.  相似文献   

19.
Summary An overview of recent molecular analyses regarding origins of plastids in algal lineages is presented. Since different phylogenetic analyses can yield contradictory views of algal plastid origins, we have examined the effect of two distance measurement methods and two distance matrix tree-building methods upon topologies for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit nucleotide sequence data set. These results are contrasted to those from bootstrap parsimony analysis of nucleotide sequence data subsets. It is shown that the phylogenetic information contained within nucleotide sequences for the chloroplast-encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, integral to photosynthesis, indicates an independent origin for this plastid gene in different plant taxa. This finding is contrasted to contrary results derived from 16S rRNA sequences. Possible explanations for discrepancies observed for these two different molecules are put forth. Other molecular sequence data which address questions of early plant evolution and the eubacterial origins of algal organelles are discussed.Offprint requests to: W. Martin  相似文献   

20.
Evolutionary distance matrices of the extant hominoids are computed from DNA sequence data, and hominoid DNA phylogenies are reconstructed by applying the neighbor-joining method to these distance matrices. The chimpanzee is clustered with the human in most of the phylogenetic trees thus obtained. The proportion of the distance between human and chimpanzee to that between human/chimpanzee and orangutan is estimated. Both mitochondrial DNA and nuclear DNA show a similar value (0.44), which is close to values derived from DNA-DNA hybridization data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号