首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

2.
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK–p38 MAPK–Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim.  相似文献   

3.
4.
Here we report that activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in both primary cultured human colon cancer cells and cell lines. Knocking-down of AMPKα by the target shRNA significantly inhibits plumbagin-induced cytotoxicity in cultured colon cancer cells, while forced activation of AMPK by introducing a constitutively active AMPK (CA-AMPK), or by the AMPK activator, inhibits HT-29 colon cancer cell growth. Our Western-blots and immunoprecipitation (IP) results demonstrate that plumbagin induces AMPK/Apoptosis signal regulating kinase 1 (ASK1)/TNF receptor-associated factor 2 (TRAF2) association to activate pro-apoptotic c-Jun N-terminal kinases (JNK)-p53 signal axis. Further, after plumbagin treatment, activated AMPK directly phosphorylates Raptor to inhibit mTOR complex 1 (mTORC1) activation and Bcl-2 expression in colon cancer cells. Finally, we found that exogenously-added short-chain ceramide (C6) enhances plumbagin-induced AMPK activation and facilitates cell apoptosis and growth inhibition. Our results suggest that AMPK might be the key mediator of plumbagin's anti-tumor activity.  相似文献   

5.
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. Over 80% of adult high-grade astrocytomas show inactivation of the Rb tumor suppressor pathway. Therefore, one possible therapeutic strategy would be to directly modulate cyclin dependent kinase (CDK) activity resulting in inhibition of Rb phosphorylation and cell cycle progression. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to:

1. inhibit cell growth;

2. inhibit cell migration;

3. decrease expression of CDK inhibitor cyclin D1, CDK4 and p21;

4. induce apoptosis in cells with high levels of p27 expression; and

5. decrease the expression of the anti-apoptotic protein Bcl-2.

The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs markedly from the mechanism of flavopiridol-induced apoptosis cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug induces apoptosis inkills different types of glioma cells by different mitochondrial-dependent pathways.  相似文献   

6.
Curcumin is a polyphenolic compound derived from Curcumin longa L. There are growing bodies of evidence revealing the antitumor effect of curcumin in different tumors; although the molecular mechanism behind this inhibition in glioblastoma multiform (GBM) still remains unclear. Here we investigated the antitumor activity of nano micelles curcumin compared with erlotinib in U-373 cells in monolayer cell cultures and spheroids models. Furthermore, we characterized affecting cell cycle perturbation, as well as apoptosis induction in GBM cells. The antiproliferative activity of nano micelles curcumin and erlotinib were assessed in monolayer and spheroid models. The influence of the cell cycle and expression levels of nuclear factor κB (NF-κB) and Wnt/β-catenin pathway was checked. Nano micelles curcumin suppressed cell growth in U-373 cells via modulation of Wnt and NF-κB pathways. Moreover, cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation posttreatment with nano micelles curcumin and erlotinib. In the core signaling pathways of GBM, nano micelles curcumin either significantly influences the NF-κB pathway by decreasing p-65 expression or significantly inhibits the Wnt/β-catenin pathway by declining cyclin D1 expression. In conclusion, we have shown that nano micelles curcumin effectively prevent proliferation, and invasion of GBM cells through perturbation of Wnt/β-catenin and NF-κB pathways, suggesting further investigations on the therapeutic application of this novel anticancer drug in in vivo models.  相似文献   

7.
Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang‐Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin‐induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin‐induced autophagy had interference on the process of apoptosis. Wogonin‐induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)‐stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin‐mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V‐positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin‐mediated apoptosis, whereas inhibition of autophagy by 3‐methyladenine (3‐MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI3K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin‐induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin‐induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. J. Cell. Biochem. 113: 3476–3485, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a phylogenetically conserved serine/threonine protein kinase. AMPK may inhibit cell growth and proliferation and also regulates apoptosis. 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) is a cell-permeable AMPK activator. Activation of AMPK with AICAR has been shown to induce apoptosis of the rat hepatoma cell line FTO2B cells and almost completely inhibited HepG2 cells growth. In this study, a HepG2 cell line, which was transfected with a vector containing human CYP2E1 cDNA (E47 cells), was treated with AICAR. Cell proliferation was blocked, and apoptosis and necrosis were elevated as assessed by cellular morphology, DNA content assay, and lactate dehydrogenase leakage. AICAR treatment significantly increases CYP2E1 activity (20-fold) and expression (5.5-fold) in E47 cells. Iodotubericidin, which inhibits the conversion of AICAR to its activated form AICAR monophosphate, the antioxidants trolox and MnTMPyP, and 4-methylpyrazole, an inhibitor of CYP2E1, all can protect the E47 cells from AICAR-induced necrosis. Production of intracellular reactive oxygen species was increased by AICAR treatment in E47 cells. The cytotoxicity mechanism of AICAR in E47 cells is suggested to include AMPK activation, p53 phosphorylation, p21 expression, overexpression of CYP2E1, and intracellular ROS accumulation.  相似文献   

9.
Combination of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) with other agents is a promising strategy to overcome TRAIL resistance in malignant cells. Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. However, whether wogonin enhances TRAIL’s antitumor activity in vivo has never been studied. In this study, the effect of combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay. The expression levels of antiapoptotic proteins including long form of cellular FLICE-like inhibitory protein (cFLIPL), X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein 1 and 2 (cIAP-1 and cIAP-2) were markedly reduced in both cultured cells and xenografted tumor tissues after co-treatment with wogonin and TRAIL. The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-l-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL. These results show for the first time that wogonin enhances TRAIL’s antitumor activity in vivo, suggesting this strategy has an application potential for clinical anticancer therapy.  相似文献   

10.
The molecular basis for induction of apoptosis in melanoma cells by vincristine remains unknown. Here we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found for the first time that vincristine induces AMPK activation (AMPKα, Thr 172) and Acetyl-CoA carboxylase (ACC, Ser 79) (a downstream molecular target of AMPK) phosphorylation in cultured melanoma cells in vitro. Reactive oxygen species (ROS) dependent LKB1 activation serves as the upstream signal for AMPK activation. AMPK inhibitor (compound C) or AMPKα siRNA knockdown inhibits vincristine induced B16 melanoma cell apoptosis, while AMPK activator 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) enhances it. AMPK activation is involved in vincristine induced p53 phosphorylation and stabilization, the latter is known to mediate melanoma cell apoptosis. Further, activation of AMPK by vincristine inhibits mTOR Complex 1 (mTORC1) in B16 melanoma cells, which serves as another important mechanism to induce melanoma cell apoptosis. Our study provides new insights into understanding the cellular and molecular mechanisms of vincristine induced cancer cell death/apoptosis. We suggest that combining AMPK activator AICAR with vincristine may have potential to be used as a new therapeutic intervention against melanoma.  相似文献   

11.
12.
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.  相似文献   

13.
Members of the Src family kinases (SFK) can modulate diverse cellular processes, including division, death and survival, but their role in autophagy has been minimally explored. Here, we investigated the roles of Lyn, a SFK, in promoting the survival of human glioblastoma tumor (GBM) cells in vitro and in vivo using lentiviral vector-mediated expression of constitutively-active Lyn (CA-Lyn) or dominant-negative Lyn (DN-Lyn). Expression of either CA-Lyn or DN-Lyn had no effect on the survival of U87 GBM cells grown under nutrient-rich conditions. In contrast, under nutrient-deprived conditions (absence of supplementation with L-glutamine, which is essential for growth of GBM cells, and FBS) CA-Lyn expression enhanced survival and promoted autophagy as well as inhibiting cell death and promoting proliferation. Expression of DN-Lyn promoted cell death. In the nutrient-deprived GBM cells, CA-Lyn expression enhanced AMPK activity and reduced the levels of pS6 kinase whereas DN-Lyn enhanced the levels of pS6 kinase. Similar results were obtained in vitro using another cultured GBM cell line and primary glioma stem cells. On propagation of the transduced GBM cells in the brains of nude mice, the CA-Lyn xenografts formed larger tumors than control cells and autophagosomes were detectable in the tumor cells. The DN-Lyn xenografts formed smaller tumors and contained more apoptotic cells. Our findings suggest that on nutrient deprivation in vitro Lyn acts to enhance the survival of GBM cells by promoting autophagy and proliferation as well as inhibiting cell death, and Lyn promotes the same effects in vivo in xenograft tumors. As the levels of Lyn protein or its activity are elevated in several cancers these findings may be of broad relevance to cancer biology.  相似文献   

14.
Extensive studies over the years have shown that the AMP-activated kinase (AMPK) exhibits negative regulatory effects on the activation of the mammalian target of rapamycin (mTOR) signaling cascade. We examined the potential involvement of AMPK in the regulation of growth and survival of malignant melanoma cells. In studies using the AMPK activators AICAR or metformin, we found potent inhibitory effects of AMPK activity on the growth of SK-MEL-2 and SK-MEL-28 malignant melanoma cells. Induction of AMPK activity was also associated with inhibition of the ability of melanoma cells to form colonies in an anchorage-independent manner in soft agar, suggesting an important role of the pathway in the control of malignant melanoma tumorigenesis. Furthermore, AICAR-treatment resulted in malignant melanoma cell death and such induction of apoptosis was further enhanced by concomitant statin-treatment. Taken together, our results provide evidence for potent inhibitory effects of AMPK on malignant melanoma cell growth and survival and raise the potential of AMPK manipulation as a novel future approach for the treatment of malignant melanoma.  相似文献   

15.
16.
Glioblastoma (GBM) remains one of the most challenging solid cancers to treat due to its highly proliferative, angiogenic and invasive nature. The small molecule CDK inhibitor, flavopiridol, has demonstrated antitumor activity in human xenograft models and is currently in clinical trials showing efficacy in patients with advanced disease. We have developed an experimental animal model using the murine glioma GL261 cells as a novel in vivo system to screen potential therapeutic agents for GBM. Results of in vitro testing demonstrate that flavopiridol has several relevant clinical characteristics such as its ability to: 1. inhibit cell growth; 2. inhibit cell migration; 3. decrease expression of cyclin D1, CDK4 and p21; 4. induce apoptosis in cells with high levels of p27 expression; and 5. decrease the expression of the anti-apoptotic protein Bcl-2. The mechanism by which flavopiridol induces apoptosis is mitochondrial-mediated. We demonstrate by electron microscopy and immunohistochemistry that drug treatment induces mitochondrial damage that was accompanied by the release of cytochrome c into the cytosol together with the translocation of apoptosis inducing factor (AIF) into the nucleus. This finding in murine glioma cells differs from the mechanism of flavopiridolinduced cell death reported by us for human glioma cells (Alonso et al., Mol Cancer Ther 2003; 2:139) where drug treatment induced a caspase- and cytochrome c-independent pathway in the absence of detectable damage to mitochondria. In apoptotic human glioma cells only translocation of AIF into the nucleus occurred. Thus, the same drug kills different types of glioma cells by different mitochondrial-dependent pathways.  相似文献   

17.
18.
Glioblastoma multiforme (GBM) is the most malignant and aggressive glioma with abnormal expression of genes that mediate glycolytic metabolism and tumor cell growth. Petunidin-3-O-glucoside (Pt3glc) is a kind of anthocyanin in the red grape and derived beverages, representing the most common naturally occurring anthocyanins with a reduced incidence of cancer and heart diseases. In this study, whether Pt3glc could effectively regulate glycolysis to inhibit GBM cell was investigated by using the DBTRG-05MG cell lines. Notably, Pt3glc displayed potent antiproliferative activity and significantly changed the protein levels related to both glycolytic metabolism and GBM cell survival. The expression of the proapoptotic protein Bcl-2-associated X protein was increased with concomitant reduction on the levels of the antiapoptotic protein B-cell lymphoma 2 and caspase-3 activity. Furthermore, the levels of survival signaling proteins, such as protein kinase B (Akt) and phospho-Akt (Scr473), extracellular signal-regulated kinase (ERK) and phospho-ERK, were significantly decreased by Pt3glc in combination with the phosphoinositide 3-kinase (PI3K) inhibitor of LY294002. Most importantly, the levels of Sirtuin 3 (SIRT3) and phosphorylated p53 were also downregulated, indicating that Pt3glc combinated with PI3K inhibitor could induce GBM cell death may act via the SIRT3/p53-mediated mitochondrial and PI3K/Akt-ERK pathways. Our findings thus provide rational evidence that the combination of Pt3glc with PI3K inhibitor, which target alternative pathways in GBM cells, may be a useful adjuvant therapy in glioblastoma treatment.  相似文献   

19.
Cisplatin is one of the most effective and widely used chemotherapeutic agents. However, one of the most salient limitations to the clinical application of cisplatin is the acquired or intrinsic drug resistance exhibited by some tumors. In the present study, we have assessed the potential of an intracellular energy balancing system as a target for augmentation of cisplatin sensitivity in tumors. AMP-activated protein kinase (AMPK) regulates the energy balance system by monitoring intracellular energy status. Here we demonstrate that AMPK is rapidly activated by cisplatin in AGS and HCT116 cancer cells. The inhibition of AMPK in those cells and in xenografts of HCT116 resulted in a remarkable increase in cisplatin-induced apoptosis, which was associated with hyper-induction of the tumor suppressor p53. We further showed that ERK, but not ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) kinases, was involved in the hyper-induction of p53 by the inhibition of cisplatin-induced AMPK. By way of contrast, cisplatin did not induce AMPK activation in HeLa cells, which appear to have a relatively high sensitivity to cisplatin-induced cytotoxicity, but expression of the constitutive active form of AMPK in HeLa cells resulted in a significant increase of cell viability after cisplatin treatment. Collectively, our data suggest that AMPK performs a pivotal function for protection against the cytotoxic effect of cisplatin, thereby implying that AMPK is one of the cellular factors determining the cellular sensitivity to cisplatin. On the basis of these observations, we propose that a strategy combining cisplatin and AMPK inhibition could be developed into a novel chemotherapeutic modality.  相似文献   

20.
5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) is widely used as an AMP-kinase activator, which regulates energy homeostasis and response to metabolic stress. Here, we investigated the effect of AICAR, an AMPK activator, on proliferation of various cancer cells and observed that proliferation of all the examined cell lines was significantly inhibited by AICAR treatment due to arrest in S-phase accompanied with increased expression of p21, p27, and p53 proteins and inhibition of PI3K-Akt pathway. Inhibition in in vitro growth of cancer cells was mirrored in vivo with increased expression of p21, p27, and p53 and attenuation of Akt phosphorylation. Anti-proliferative effect of AICAR is mediated through activated AMP-activated protein kinase (AMPK) as iodotubericidin and dominant-negative AMPK expression vector reversed the AICAR-mediated growth arrest. Moreover, constitutive active AMPK arrested the cells in S-phase by inducing the expression of p21, p27, and p53 proteins and inhibiting Akt phosphorylation, suggesting the involvement of AMPK. AICAR inhibited proliferation in both LKB and LKB knock-out mouse embryo fibroblasts to similar extent and arrested cells at S-phase when transfected with dominant negative expression vector of LKB. Altogether, these results indicate that AICAR can be utilized as a therapeutic drug to inhibit cancer, and AMPK can be a potential target for treatment of various cancers independent of the functional tumor suppressor gene, LKB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号