首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Astrocytosis is a common feature of amyloid plaques. The Abeta-astrocyte interaction produces a detrimental effect on neurons, which may contribute to neurodegeneration in Alzheimer disease (AD). The regulation of astrocyte apoptosis is essential to physiological and pathological processes in the CNS. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that melatonin alleviated the learning and memory deficits in the APP 695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis in an astrocyte-like cell is discussed. We found that rat astroglioma C6 cells treated with Abeta25-35 or Abeta1-42 undergo apoptosis and that melatonin pretreatment at 10(-5), 10(-6), and 10(-7) M significantly attenuates Abeta25-35- or Abeta1-42-induced apoptosis. The antiapoptotic effects of melatonin were extremely reproducible and corroborated by multiple quantitative methods, including an MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, remarkably prevented Abeta1-40-induced intracellular calcium overload, and significantly alleviated Abeta1-40-induced membrane rigidity. Our results demonstrate that, in addition to the beneficial effects of providing direct antioxidant protection to neurons, melatonin may enhance neuroprotection against Abeta-induced neurotoxicity by promoting the survival of glial cells.  相似文献   

2.
Rotenone is an inhibitor of mitochondrial complex I-induced neurotoxicity in PC12 cells and has been widely studied to elucidate the pathogenesis of Parkinson’s disease. We investigated the neuroprotective effects of betaine on rotenone-induced neurotoxicity in PC12 cells. Betaine inhibited rotenone-induced apoptosis in a dose-dependent manner, with cell viability increasing from 50 % with rotenone treatment alone to 71 % with rotenone plus 100-μM betaine treatment. Flow cytometric analysis demonstrated cell death in the rotenone-treated cells to be over 50 %; the number of live cells increased with betaine pretreatment. Betaine pretreatment of PC12 cells attenuated rotenone-mediated mitochondrial dysfunction, including nuclear fragmentation, ATP depletion, mitochondrial membrane depolarization, caspase-3/7 activation, and reactive oxygen species production. Western blots demonstrated activation of caspase-3 and caspase-9, and their increased expression levels in rotenone-treated cells; betaine decreased caspase-3 and caspase-9 expression levels and suppressed their activation. Together, these results suggest that betaine may serve as a neuroprotective agent in the treatment of neurodegenerative diseases.  相似文献   

3.
In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity.  相似文献   

4.
Abstract

The pineal hormone, melatonin (MLT), has been shown to have therapeutic effects in patients with gastric cancer; however, the mechanisms for the anti-cancer effects are unknown. We investigated the effects of melatonin on cell proliferation, apoptosis, colony formation and cell migration in the gastric adenocarcinoma cell line, SGC7901, using MTT assay, Hoechst 33258 staining, flow cytometry, western blot, caspase-3 activity assay, soft agar colony formation assay, and scratch-wound assay. Our results showed that melatonin could inhibit cell proliferation, colony formation and migration efficiency, and it promoted apoptosis of SGC7901 cells. Our findings suggest that the anti-cancer effects of melatonin may be due to both inhibition of tumor cell proliferation and reduction of the metastatic potential of tumor cells.  相似文献   

5.
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.  相似文献   

6.
目的 探讨炎性因子IL-6是否通过Sirt1/p53/caspase-3通路介导胰岛β细胞凋亡.方法 Western 印迹检测Sirt1在小鼠各组织器官和胰岛β细胞系NIT-1细胞中的表达,免疫荧光法检测Sirt1在细胞中的定位.IL-6(10 ng/ml)处理NIT-1细胞48 h,Hoechst3334染色及流式细胞仪检测细胞凋亡,Western印迹检测细胞内Sirt1、P53、乙酰化P53(acety-P53)、caspase-3和cleaved caspase-3的水平变化.结果 Sirt1在小鼠各组织器官和胰岛β细胞中均有表达,主要定位于细胞核.IL-6处理NIT-1细胞后,伴随Sirt1表达的显著减少,acety-P53明显上调,p53/caspase-3通路活化,NIT-1细胞凋亡增加.结论 IL-6通过下调Sirt1进而激活p53/caspase-3信号通路引起胰岛β细胞凋亡.  相似文献   

7.
In the current study, we isolated 10 carbazole alkaloids from the plant species Murraya koenigii (Rutaceae), and examined their effects on the growth of the human leukemia cell line HL-60. Three carbazole alkaloids, mahanine (6), pyrayafoline-D (7) and murrafoline-I (9), showed significant cytotoxicity against HL-60 cells. Fluorescence microscopy with Hoechst 33342 staining revealed that the percentage of apoptotic cells with fragmented nuclei and condensed chromatin was increased in a time-dependent manner after treatment with each alkaloid. Interestingly, each carbazole alkaloid induced the loss of mitochondrial membrane potential. In addition, both caspase-9 and caspase-3 were also time-dependently activated upon treatment with the alkaloids. Caspase-9 and caspase-3 inhibitors suppressed apoptosis induced by these alkaloids. The results suggest that these three alkaloids induced apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway, through mitochondrial dysfunction.  相似文献   

8.
香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡   总被引:2,自引:0,他引:2  
Jiao ZX  Ao QL  Xiong M 《生理学报》2006,58(3):244-254
香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素.  相似文献   

9.
10.
《Free radical research》2013,47(2):239-250
Abstract

Due to its high nitrogen content, melamine was deliberately added to raw milk for increasing the apparent protein content. Previous studies showed that melamine-induced apoptosis and oxidative damage on PC12 cells and rats’ hippocampus. Several evidences suggested that vitamin antioxidant reduced oxidative stress and improved organic function. Whether treatments with antioxidant vitamins C or E, otherwise combination of them can attenuate oxidative stress after melamine administration remains to be elucidated. In this study, the reversible effects of vitamin antioxidants was investigated on melamine-induced neurotoxicity in cultured PC12 cells, an in vitro model of neuronal cells. When comparing vitamin C and E, the combination of both statistically increased PC12 cells viability. The results further showed that vitamin complex has effectively reduced the formation of reaction oxygen species, decreased the level of malondialdehyde, and elevated the activities of antioxidative enzymes. Hoechst 33342 staining and flow cytometric analysis of apoptosis showed that vitamin combination treatment effectively prevented PC12 cells from this melamine-induced apoptosis. It revealed the apoptotic nuclear features of the melamine-induced cell death. Additionally, a combination treatment of vitamins effectively inhibited apoptosis via blocking the increased activation of caspase-3. In summary, the vitamin E and C combination treatment could rescue PC12 cells from the injury induced by melamine through the downregulation of oxidative stress and prevention of melamine-induced apoptosis.  相似文献   

11.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

12.
Cell death resulting from cadmium (Cd) intoxication has been confirmed to induce both necrosis and apoptosis. The ratio between both types of cell death is dose- and cell-type-dependent. This study used the human keratinocytes HaCaT expressing a mutated p53 and the rat glial cells C6 expressing a wild p53 as models to characterize Cd-induced apoptosis, using sub-lethal and lethal doses. At these concentrations, features of apoptosis were observed 24 h after C6 cell treatment: apoptotic DNA fragmentation and caspase-9 activation, whereas Cd did not induce caspase-3. In HaCaT, Cd did not induce apoptotic DNA fragmentation or caspase-9 and -3 activation. The results also showed that the inhibition of p53 led to a resistance of the C6 cells to 20 µm Cd, decreased the apoptosis and increased the metallothioneins in these cells. p53 restoration increased the sensitivity of HaCaT cells to Cd but did not affect the MT expression. The results suggest that Cd induced apoptosis in C6 cells but a non-apoptotic cellular death in HaCaT cells.  相似文献   

13.
The aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.  相似文献   

14.

Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.

  相似文献   

15.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

16.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

17.
18.
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR?+?selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36?±?0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.  相似文献   

19.
Panaxydol is a naturally occurring non-peptidyl small molecule isolated from the lipophilic fractions of Panax notoginseng, a well-known Chinese traditional medicine. Previous studies have shown that panaxydol inhibited the growth of various kinds of malignant cell lines. To date, there has been no report concerning the effect of panaxydol on cell growth inhibition in glioma cells. In this paper, we examined panaxydol's antiproliferation and proapoptotic effects on rat C6 glioma cells and investigated its mechanism. Cell growth inhibition of panaxydol was determined by MTT reduction assay. Apoptosis of cells was measured by both Hoechst 33258 staining and Annexin V analysis. It was found that panaxydol markedly inhibited proliferation of C6 cells in a dose-dependent manner with ID(50) of 40 microM. The cell apoptosis was observed at 48 h in the presence of panaxydol. In concert with these findings, Western blot analysis showed a decreased expression of bcl-2 and increased levels of Bax and caspase-3 in C6 cells treated by panaxydol. In conclusion, panaxydol has profound effects on growth and apoptosis of C6 cells, suggesting that panaxydol may be a potential candidate for the treatment of malignant gliomas.  相似文献   

20.
To investigate the mode of zinc-induced cell death, the associated morphological changes, and biological events were examined in zinc-treated Molt-4 cells. Fluorescence microscope observations with double staining of zinc-treated cells with Hoechst 33342 and propidium iodide (PI) indicated that the metal induced both necrosis and apoptosis. To confirm this, cells were stained with both PI and FITC-labeled annexin V, which binds phosphatidylserine, and then analyzed by flow cytometry. The results also confirmed that zinc induces mixed types of cell death, necrosis and apoptosis, and that the former induction occurs earlier and at a greater frequency. Hallmarks of apoptosis such as abnormal chromosome condensation and release of cytochrome c, as well as the appearance of annexin-positive cells, appeared along with the expression of mitochondrial membrane protein 7A6. However, zinc did not induce increases in caspase-3 like protease and caspase-8 activities, and caused slightly hypodiploid cells. Furthermore, the induction of cell death and annexin-positive cells was not blocked by the caspase inhibitors Ac-YVAD-CHO and Ac-DEVD-CHO. These results indicate that zinc induces both necrosis and apoptosis, without caspase-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号