首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystallization of human neutrophil elastase   总被引:2,自引:0,他引:2  
Human neutrophil elastase was inactivated by methoxysuccinyl-L-Ala-L-Ala-L-Pro-L-Ala-chloromethane. The modified enzyme was crystallized from 40 mM ammonium phosphate, pH 7.0 in the hexagonal space group P6(3) with unit cell parameters a = 74.53 A, b = 74.53 A, c = 70.88 A, alpha = beta = 90 degrees, gamma = 120 degrees. These crystals were resistant to radiation damage and diffracted beyond 1.84-A resolution. The asymmetric unit contained one 25,000-dalton monomer of human neutrophil elastase. Crystals were also grown from the enzyme modified with the analogous iodinated inactivator, p-iodoanilinosuccinyl-L-Ala-L-Ala-L-Pro-L-Ala-chloromethane. These crystals proved to be isomorphous with those of methoxysuccinyl-L-Ala-L-Ala-L-Pro-L-Ala-chloromethane-modified human neutrophil elastase, and served as a single-site, heavy atom derivative for solving the tertiary structure of the enzyme.  相似文献   

2.
D J Pipoly  E C Crouch 《Biochemistry》1987,26(18):5748-5754
Leukocyte-derived proteases may contribute to the destruction of basement membranes during inflammation. We have, therefore, examined the degradation of human type IV procollagen (PC) by purified human neutrophil elastase (HLE). Native [14C]proline-labeled type IV PC was isolated from cultures of human HT-1080 cells and incubated with HLE for various times at 25 or 37 degrees C. Cleavage products were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by CNBr peptide mapping. Incubation of type IV PC with HLE (less than 1:10 HLE:type IV weight ratio) resulted in cleavage of the pro alpha 1 (IV) and pro alpha 2 chains (Mr 180,000 and 175,000) to discrete components of Mr greater than 140,000. Peptide mapping indicated that the carboxy-terminal collagenase-resistant domains of both chains were rapidly and preferentially degraded. Longer incubations or incubations at higher enzyme:substrate ratios resulted in extensive and asymmetric internal cleavage with the generation of fragments similar in size distribution to the major pepsin-resistant fragments of type IV collagen. Our findings indicate that soluble, native human type IV PC is a substrate for HLE and is preferentially cleaved within the globular carboxy-terminal domains of the pro alpha 1 and pro alpha 2 chains. We suggest that even limited cleavage of type IV PC by HLE may disrupt intermolecular carboxy-terminal interactions believed to be important for basement membrane assembly and for maintaining basement membrane structure in vivo.  相似文献   

3.
In this report, the susceptibility of type VIII collagen to human neutrophil elastase is compared to other extracellular matrix components. Type X collagen is degraded to specific fragments at a substrate to enzyme ratio of 5:1 after 20 h at room temperature, but type VIII collagen is almost completely degraded after only 4 h incubation at a substrate to enzyme ratio of 50:1 and partly degraded after only 15 min. Laminin, merosin and types I, III, IV and V collagen exhibit no susceptibility to neutrophil elastase under the latter conditions, while fibronectin is degraded.  相似文献   

4.
Structure of the human neutrophil elastase gene   总被引:14,自引:0,他引:14  
The gene for human neutrophil elastase (NE), a powerful serine protease carried by blood neutrophils and capable of destroying most connective tissue proteins, was cloned from a genomic DNA library of a normal individual. The NE gene consists of 5 exons and 4 introns included in a single copy 4-kilobase segment of chromosome 11 at q14. The coding exons of the NE gene predict a primary translation product of 267 residues including a 29-residue N-terminal precursor peptide and a 20-residue C-terminal precursor peptide. Analysis of the N-terminal peptide sequence suggests it contains a 27-residue "pre" signal peptide followed by a "proN" dipeptide, similar to that of other blood cell lysosomal proteases. The sequences for the mature 218-residue NE protein are included in exons II-V. The 5'-flanking region of the gene includes typical TATA, CAAT, and GC sequences within 61 base pairs (bp) of the cap site. The sequence 1.5 kilobases 5' to exon I contains several interesting repetitive sequences including six tandem repeats of unique 52- or 53-bp sequences. The 5'-flanking region also contains a 19-bp segment with 90% homology to a segment of the 5'-flanking region of the human myeloperoxidase (MPO) gene, a gene also expressed in bone marrow precursor cells and a protein stored in the same neutrophil granules as NE. In addition, like the MPO gene, the NE 5'-flanking region has several regions with greater than or equal to 75% homology to sequences 5' to c-myc, but there is no overlap between the NE-c-myc and MPO-c-myc homologous sequences.  相似文献   

5.
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure–activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.  相似文献   

6.
Herein, we describe the synthesis and resulting activity of a complex series of α-aminophosphonate diaryl esters as irreversible human neutrophil elastase inhibitors and their selectivity preference for human neutrophil elastase over several other serine proteases such as porcine pancreatic elastase, trypsin, and chymotrypsin. We synthesized and examined the inhibitory potency of several new simple Cbz-protected α-aminoalkylphosphonate diaryl esters that yielded several new HNE inhibitors, where one of the obtained compounds Cbz-ValP(OC6H4-4-COOMe)2 displayed an apparent second-order inhibition value at 33,015 M−1 s−1.  相似文献   

7.
Described are the acylation binding of trans-lactam 1 to porcine pancreatic elastase, the selection of the SO2Me activating group for the lactam N which also confers metabolic stability in hamster liver microsomes, the introduction of aqueous solubility through the piperidine salt 9, the in vivo oral activity of 9 and its bioavailability, and the introduction of 9 as an intracellular neutrophil elastase inhibitor.  相似文献   

8.
Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value?=?56?nM) and chemical stability (t1/2?=?114?min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.  相似文献   

9.
Proteinase inhibitor PI9 (PI9) is an intracellular 42-kDa member of the ovalbumin family of serpins that is found primarily in placenta, lung and lymphocytes. PI9 has been shown to be a fast-acting inhibitor of granzyme B in vitro, presumably through the utilization of Glu(340) as the P(1) inhibitory residue in its reactive site loop. In this report, we describe the inhibition of human neutrophil elastase by recombinant human PI9. Inhibition occurred with an overall K(i)' of 221 pM and a second-order association rate constant of 1.5 x 10(5) M(-1) s(-1), indicating that PI9 is a potent inhibitor of this serine proteinase in vitro. In addition, incubation of recombinant PI9 with native neutrophil elastase resulted in the formation of an SDS-resistant 62-kDa complex. Amino-terminal sequence analyses provided evidence that inhibition of elastase occurred through the use of Cys(342) as the reactive P(1) amino acid residue in the PI9 reactive site loop. Thus, PI9 joins its close relatives PI6 and PI8 as having the ability to utilize multiple reactive site loop residues as the inhibitory P(1) residue to expand its inhibitory spectrum.  相似文献   

10.
Spencer JL  Stone PJ  Nugent MA 《Biochemistry》2006,45(30):9104-9120
In the normal feedback mechanism of injury and repair in the lung, fragmented heparan sulfate proteoglycans (HSPGs) from damaged extracellular matrix and cells are believed to interact with elastases to limit their activity. An imbalance in the HSPG-elastase response may play an important role in situations where uncontrolled lung injury leads to diseases such as emphysema. To gain insight into this complex process of heparin and heparan sulfate regulation of elastases, an experimental study was undertaken to resolve the mechanism and structural requirements of heparin inhibition of human neutrophil elastase (HNE). Kinetic analyses were completed using in vitro assays with synthetic and insoluble elastin substrates in the presence of HNE and various heparin preparations (14-15 kDa; 17-19 kDa), heparin-derived oligosaccharides (4-22 saccharides), and chemically modified heparins (2-O-, 6-O-, O-, and N-desulfated). Results showed that heparin inhibits HNE by a tight-binding, hyperbolic, competitive mechanism, contrary to previous reports in the literature. A minimum length of at least 12-14 saccharides is required for inhibition, after which inhibitory activity increases with chain length (or molecular mass). Although all N- and O-sulfate groups contribute to inhibition, 2-O-sulfate groups are less critical than either N- or 6-O-sulfate groups, indicating that inhibitory activity is dependent upon the heparin fine structure. Molecular-docking simulations support the kinetic results and provide a plausible model for the size requirement, whereby positively charged, clamp-like regions at the ends of the interdomain crevice (elastase fold) are used by heparin to bridge the active site and inhibit activity.  相似文献   

11.
Human neutrophil elastase (HNE) is a serine protease that has been implicated in the abnormal turnover of connective tissue proteins and has been described as an important pathogenic factor in several inflammatory diseases such as rheumatoid arthritis or cystic fibrosis. Here we investigated 17 sesquiterpene lactones (SLs) for their ability to inhibit human neutrophil elastase in an in vitro assay. Podachaenin was the most active compound with an IC(50) value of 7 microM. SLs do not covalently bind to the amino acids of the catalytic triad, thus differing from other elastase inhibitors with a lactone moiety. In contrast to most other biological activities of SLs HNE inhibition is not mediated by alpha,beta-unsaturated carbonyl functions. Ligand binding calculations using the X-ray structure of HNE and the program FlexX revealed structural elements which are a prerequisite for their inhibitory activity.  相似文献   

12.
Here we present a simple and rapid method for the construction of phosphonic peptide mimetic inhibitor libraries-products of Ugi and Passerini multicomponent condensations-leading to the selection of new biologically active phosphonic pseudopeptides. As the starting isonitriles, 1-isocyanoalkylphosphonate diaryl ester derivatives were applied. The structure of the synthesized inhibitors was designed to target human neutrophil elastase, a serine protease whose uncontrolled activity may lead to development of several pathophysiological states such as rheumatoid arthritis, cystic fibrosis or tumor growth and invasion. After screening the inhibitory activity of our constructed libraries, the most active compounds were synthesized as single molecules. One of the obtained inhibitors, Cbz-Met-O-Met-Val(P)(OC(6)H(4)-p-Cl)(2), displayed apparent second-order inhibition value at 40,105M(-1)s(-1) as the diastereomers mixture. Inhibition potency and selectivity of action toward other serine proteases as well as the results of initial in vitro experiments regarding inhibitors influence on cancer cell proliferation are presented.  相似文献   

13.
Human neutrophil cathepsin G was found to be unable to significantly stimulate the degradation of either bovine or human elastin by neutrophil elastase, using four different procedures to monitor digestion. A range of stimulations from 1.1 to 2.9-fold was found, with a 2.0-fold stimulation being the average found with the assays tested. These results contrast with those reported by Boudier et al. [(1981) J. Biol. Chem. 256, 10256-10258] who reported a five- to seven-fold stimulation of elastolysis of human lung elastin by cathepsin G, when present at a 2:1 molar ratio relative to elastase. Significantly, we found little stimulation of elastolysis with either human or bovine lung elastin as substrate while Boudier et al. found stimulation only with the human elastin. Thus, it would appear that cathepsin G does not play a predominant role as an elastolytic enzyme; rather, its role in this case may be one of binding to non-productive sites on the elastin surface.  相似文献   

14.
Human neutrophil elastase catalyzes the inactivation of antithrombin by a specific and limited proteinolytic cleavage. This inactivation reaction is greatly accelerated by an active anticoagulant heparin subfraction with high binding affinity for antithrombin. A potentially complex reaction mechanism is suggested by the binding of both neutrophil elastase and antithrombin to heparin. The in vitro kinetic behavior of this system was examined under two different conditions: 1) at a constant antithrombin concentration in which the active anticoagulant heparin was varied from catalytic to saturating levels; and 2) at a fixed, saturating heparin concentration and variable antithrombin levels. Under conditions of excess heparin, the inactivation could be continuously monitored by a decrease in the ultraviolet fluorescence emission of the inhibitor. A Km of approximately 1 microM for the heparin-antithrombin complex and a turnover number of approximately 200/min was estimated from these analyses. Maximum acceleratory effects of heparin on the inactivation of antithrombin occur at heparin concentrations significantly lower than those required to saturate antithrombin. The divergence in acceleratory effect and antithrombin binding contrasts with the anticoagulant functioning of heparin in promoting the formation of covalent antithrombin-enzyme complexes and is likely to derive from the fact that neutrophil elastase is not consumed in the inactivation reaction. A size dependence was observed for the heparin effect since an anticoagulantly active octasaccharide fragment of heparin, with avid antithrombin binding activity, was without effect on the inactivation of antithrombin by neutrophil elastase. Despite the completely nonfunctional nature of elastase-cleaved antithrombin and the altered physical properties of the inhibitor as indicated by fluorescence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the inactivated inhibitor exhibited a circulating half-life in rabbits that was indistinguishable from native antithrombin. These results point to an unexpected and apparently contradictory function for heparin which may relate to the properties of the vascular endothelium in pathological situations.  相似文献   

15.
SC-39026, (+/-) 2-chloro-4-(1-hydroxyoctadecyl)benzoic acid, inhibits human neutrophil elastase with an IC50 of 0.5 microM (KI of 1.5 microM). Its inhibition of elastase is reversible and noncompetitive at low concentrations (0.5-1.25 microM). Inhibition is "mixed" at higher inhibitor concentrations. SC-39026 is inactive against hog pancreatic elastase, bovine alpha-chymotrypsin and Pseudomonas aeruginosa elastase, but does inhibit human neutrophil cathepsin G with an IC50 of approximately 2.5 microM. Neutrophil elastases isolated from rat, hamster, rabbit and hog are also inhibited by SC-39026.  相似文献   

16.
Mutations in ELA2, the gene encoding neutrophil elastase (NE), cause the human diseases cyclic neutropenia (CN) and severe congenital neutropenia (SCN). Numerous mutations are known, but their lack of consistent biochemical effect has proven puzzling. The recent finding that mutation of AP3B1, which encodes the beta subunit of adaptor protein complex 3 (AP3), is the cause of canine CN suggests a model for the molecular basis of hereditary neutropenias, involving the mistrafficking of NE: AP3 recognizes NE as a cargo protein, and their interaction implies that NE is a transmembrane protein. Computerized algorithms predict two NE transmembrane domains. Most CN mutations fall within predicted transmembrane domains and lead to excessive deposition of NE in granules, whereas SCN mutations usually disrupt the AP3 recognition sequence, resulting in excessive transport to the plasma membrane.  相似文献   

17.
The interaction of a series of 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based sulfonamides with neutrophil-derived serine proteases was investigated. The nature of the amino acid component, believed to be oriented toward the S' subsites, had a profound effect on enzyme selectivity. This series of compounds were found to be potent, time-dependent inhibitors of human neutrophil elastase (HNE) and were devoid of any inhibitory activity toward neutrophil proteinase 3 (PR 3) and cathepsin G (Cat G). The results of these studies demonstrate that exploitation of differences in the S' subsites of HNE and PR 3 can lead to highly selective inhibitors of HNE.  相似文献   

18.
Neutrophil elastase and cathepsin G are serine proteases that can damage connective tissue and trigger other pathological reactions. Compounds containing a peptide sequence to impart specificity and bearing an alpha-dicarbonyl unit (alpha-diketone or alpha-keto ester) at the carboxy terminus are potent inhibitors of the neutrophil serine proteases (human neutrophil elastase: R-Val-COCH3, Ki = 0.017 microM; R-Val-COOCH3, Ki = 0.002 microM; human neutrophil cathepsin G: R-Phe-COCH3, Ki = 0.8 microM; R-Phe-COOCH3, Ki = 0.44 microM; R = N-(4-[(4-chlorophenyl)sulfonylaminocarbonyl]phenylcarbonyl)+ ++ValylProlyl).  相似文献   

19.
Stimulated neutrophils produced vascular permeability enhancing (VPE) activity in the presence of high molecular weight kininogen (HMWK), which was inhibited mainly by a neutrophil elastase (NE) inhibitor or a bradykinin (BK) B(2)-receptor antagonist. NE (>3 nM) generated VPE activity from kininogens at normal plasma concentrations with the smaller protein being several fold more responsive than the larger protein, through releasing a new VPE peptide (E-kinin), SLMKRPPGFSPFRSSRI. Synthetic E-kinin, SLMKRPPGFSPFRSS and SLMKRPPGFSPFR had VPE and blood pressure lowering activities, which were comparable to the activities of BK and completely inhibited by B(2)-receptor antagonists. Interestingly, E-kinin and SLMKRPPGFSPFRSS did not induce smooth muscle contraction. These results suggest that E-kinin formed in vivo may be processed at the carboxy-terminus to give a peptide that can bind to the B(2)-receptor. The molecular mechanism for neutrophil-associated VPE may be explained by excision of E-kinin from kininogens by NE, followed by further processing of the peptide.  相似文献   

20.
We have identified the biological activity of three polypeptides released by limited proteolysis of human plasma fibronectin by leukocyte elastase. A Mr = 140,000 peptide contains cell-spreading activity; a Mr = 60,000 peptide mediates binding to denatured collagen (gelatin), and a Mr = 29,000 peptide contains glutaminyl residues responsible for the transglutaminase (blood coagulation factor XIIIa)-catalyzed incorporation of amines. More extensive proteolysis yielded numerous peptides, including a Mr = 40,000 peptide derived from the Mr = 60,000 peptide which retains gelatin-binding activity. Quantification of the gelatin-binding peptides is consistent with two binding sites per dimeric fibronectin molecule of Mr = 440,000. Both Mr = 60,000 and 40,000 gelatin-binding peptides were enriched with half-cystine residues, containing 28 and 25, respectively, but devoid of cysteine. This, coupled with the electrophoretic behavior of both peptides, was consistent with the presence of intramolecular disulfide bonds in the gelatin-binding domain. Intact fibronectin contains 1 free cysteine residue/monomer, as recently described. This cysteine reacts with 5,5'-dithiobis(2-nitrobenzoic acid) very slowly under nondenaturing conditions but rapidly when fibronectin is denatured. The free cysteine is located in the Mr = 140,000 peptide. While the Mr = 40,000 and 60,000 gelatin-binding peptides bind to gelatin with an affinity about 30-fold and 5-fold less than intact fibronectin (based on a monomeric fibronectin Mr = 220,000), neither gelatin-binding peptide supports spreading of fibronectin-deficient test cells on gelatin or tissue culture plastic substrates. The purified Mr = 140,000 peptide supported cell spreading on plastic, retaining about one-half of the spreading activity of intact fibronectin on a weight basis. These data confirm recent results, suggesting multiple, protease- resistant domains with discrete biological functions within fibronectin. Our results, together with established data, suggest a model for the location of the transglutaminase-reactive glutaminyl residues, gelatin binding, and cell-adhesive domains in fibronectin. The release of univalent, biologically active fibronectin fragments by elastase, a major physiologically released inflammatory protease of human leukocytes, suggests a new potential mechanism for alteration of cell connective tissue interactions at sites of inflammation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号