首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sucrose density gradient analysis was utilized to determine whether 1,25-dihydroxyvitamin D3 receptors are present in the rat uterus. A distinct 3.6S [3H]1,25-dihydroxyvitamin D3 binding component was observed in chromatin extracts of estrogen-primed, ovariectomized rat uteri. Binding to this putative 1,25-dihydroxyvitamin D3 receptor was inhibited by excess 1,25-dihydroxyvitamin D3, but not by 25-hydroxyvitamin D3, estradiol-17β, promegestone, or cortisol. Low levels of the receptor seemed to be present in the unprimed uterus. Estrogen injection significantly increased the number of 1,25-dihydroxyvitamin D3 receptors and progesterone co-administration reduced, but did not abolish, this effect.  相似文献   

2.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

3.
Radiolabelled 1, 25-dihydroxyvitamin D3 was found to accumulate in mammary tissue of lactating rats, to bind to a specific high affinity binding component in mammary cytosol and to associate with chromatin in vivo. 1,25-dihydroxyvitamin D3 was also shown to have a direct effect on milk calcium concentration in vivo. The cytosolic binding protein was found to sediment at 3.2S on sucrose gradients and to have a dissociation constant of 2.5 × 10?10 M. Localization of 1, 25-dihydroxyvitamin D3 in mammary gland and other tissues of lactating rats was compared. These results provide evidence that the lactating mammary gland is a target tissue for 1,25-dihydroxyvitamin D3.  相似文献   

4.
Cytosol fractions prepared from rachitic chick kidney and pancreas were analyzed for binding of vitamin D3 metabolites by sucrose density gradient centrifugation. Both cytosol fractions were found to contain a 3.6S macromolecule which specifically binds 1,25-dihydroxy[3H] vitamin D3 and in addition a 5 to 6S macromolecule which binds 25-hydroxy[3H]vitamin D3. Sucrose gradient analysis of a KCl extract prepared from kidney or pancreas chromatin resulted in a peak (3.6S) of bound 1,25-dihydroxyvitamin D3 which could not be distinguished from the cytoplasmic binding component. The interaction of 1,25-dihydroxy[3H]vitamin D3 with the cytoplasmic binding component of both tissues occurred at low concentrations of hormone with high affinity.  相似文献   

5.
Specific binding proteins for 1,25-dihydroxyvitamin D3 were identified in bovine mammary tissue obtained from lactating and non-lactating mammary glands by sucrose density gradient centrifugation. The macromolecules had characteristic sedimentation coefficients of 3.5-3.7 S. The interaction of l,25-dihydroxy[3H]vitamin D3 with the macromolecule of the mammary gland cytosol occurred at low concentrations, was saturable, and was a high affinity interaction (Kd = 4.2 × 10?10M at 25 °C). Binding was reversed by excess unlabeled 1,25-dihydroxyvitamin D3, was destroyed by heat and/or incubation with trypsin. It is thus inferred that this macromolecule is protein as it is not destroyed by ribonuclease or deoxyribonuclease. 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and vitamin D3 did not effectively compete with 1,25-dihydroxyvitamin D3 for binding to cytosol of mammary tissue at near physiological concentrations of these analogs, thus demonstrating the specificity of the binding protein for 1,25-dihydroxyvitamin D3. In vitro subcellular distribution of 1,25-dihydroxy[3H]vitamin D3 demonstrated a time- and temperature-dependent movement of the hormone from the cytoplasm to the nucleus. By 90 min at 25 °C 72% of the 1,25-dihydroxy[3H]vitamin D3 was associated with the nucleus. In addition a 5–6 S macromolecule which binds 25-hydroxy[3H]vitamin D3 was demonstrated in mammary tissue. Finally, it is possible that the receptor-hormone complex present in mammary tissue may function in a manner analogous to intestinal tissue, resulting in the control of calcium transport by 1,25-dihydroxyvitamin D3 in this tissue.  相似文献   

6.
The structural requirements for the interaction of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] with an anti-1,25(OH)2D3 antiserum and with the natural cytosolic receptor for 1,25(OH)2D3 isolated from chick intestine have been evaluated quantitatively. The antiserum was raised in a rabbit against a 1,25(OH)2D3-hemisuccinate derivative which was linked to bovine serum albumin at the C-3 position of the steroid. For these cross-reaction studies structural analogs of 1,25(OH)2D3 were used in competitive protein binding assays; their ability to interact with the binding proteins was expressed as relative competitive index (RCI) values where the RCI of 1,25(OH)2D3 is defined to be 100. The results indicate that the 25-hydroxyl group is the most important hydroxyl for the interaction of 1,25(OH)2D3 with this antiserum. The absence of this hydroxyl group decreases the RCI value to 0.2. Lack of the hydroxyl at carbon-3 or carbon-1 decreases the RCI value to 33 or 25, respectively, indicating that the specificity of this antiserum for the A ring is much lower than for the side chain. The high specificity for the side chain is underlined by the fact that insertion of an additional hydroxyl group at C-24 or C-26 of 1,25(OH)2D3 decreases the binding affinity to the antiserum markedly. The chick intestinal mucosal receptor shows a comparable high specificity for the side chain of 1,25(OH)2D3, but an even higher specificity for the A ring in comparison to the antiserum. With the intestinal receptor, the 3-hydroxyl is only 1/ 10th as important as the 1-hydroxyl group and the 25-hydroxyl group for the binding process. Scatchard analysis showed a KD value of 1.7 × 10?10m for the antiserum and 2.3 × 10?10m for the chick intestinal mucosal receptor for the equilibrium binding of 1,25(OH)2D3 at 2 °C. The association rate constant at 2 °C was determined to be 5.8 × 107 M?1 min?1 for the antiserum and 0.55 × 107 M?1 min?1 for the receptor, indicating a 10-fold more rapid association of 1,25(OH)2D3 to the antiserum in comparison to the receptor. Furthermore, the dissociation process was found to be slower for the chick intestinal receptor (dissociation rate constant 3.6 × 10?5 min?1 versus 21.0 × 10?5 min?1).  相似文献   

7.
The stability of the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3 has been examined using radiological binding studies and sucrose density gradient ultracentrifugation. Specific binding of 1,25-dihydroxyvitamin D3 to the 3.7 S binding protein decreases in crude cytosol in a time- and temperature-dependent manner. Increased receptor instability is also observed outside a pH range of 6 to 10. Ionic strength does not seem to be a critical factor in preventing loss of specific 1,25-dihydroxyvitamin D3 binding activity. However, when KCl is present at a concentration of 300 mm during cytosol preparation, quantitatively more specific binding per unit protein was obtained. Consistent with the idea that loss of specific binding might be due to enzymatic degradation or inactivation of receptor, dilution of cytosol was found to slow the rate of loss of specific 1,25-dihydroxyvitamin D3 binding. The importance of maintaining a reducing environment for the 1,25-dihydroxyvitamin D3 binding protein is demonstrated by the destruction of binding activity by n-ethylmaleimide and by the increased stability in the presence of 5.0 mm dithiothreitol. Likewise, 5.0 mm monothioglycerol was partially effective in preventing the loss of specific 1,25-dihydroxyvitamin D3 binding during in vitro incubation. Several protease inhibitors were not able to exert a stabilizing influence on receptor integrity during in vitro incubations. Albeit, both tosylamide-phenylethylchloromethyl ketone and p-hydroxymercuribenzoate actually decreased specific 1,25-dihydroxyvitamin D3 binding. This inhibition appeared to be reversible if samples were subsequently incubated in the presence of dithiothreitol. These results clearly demonstrate that the aporeceptor is extremely unstable and the integrity of sulfhydryl constituents is of primary importance.  相似文献   

8.
To identify and assess the specificity of the 1,25-dihydroxyvitamin D3 chick intestinal cytoplasmic receptor's nucleotide binding site, a competitive DNA-cellulose binding assay was utilized. Unlike other steroid hormone receptors, the 1,25-dihydroxyvitamin D3-receptor complex binds homologous DNA at 4 °C and does not appear to undergo thermal- or salt-induced activation. Data are presented which suggest that receptor binding discriminates between double-stranded DNA and RNA but is not specific with respect to DNA base sequences. However, DNA base sequence selectivity by 1,25-dihydroxyvitamin D3-receptor complexes is observed using synthetic polydeoxyribonucleotides, particularly, poly(dA-dT) · poly(dA-dT) and poly(dA) · poly(dT). Preference for double-stranded over single-stranded DNA was also observed. Consistent with this finding, both actinomycin D and ethidium bromide caused a dose-dependent inhibition of receptor binding to DNA-cellulose. It is concluded that the 1,25-dihydroxyvitamin D3-receptor complex has specificity for AT-rich segments of double-stranded DNA and that this interaction is not merely electrostatic, but also involves hydrophobic interaction with the major and/or minor grooves of the DNA helix.  相似文献   

9.
The primary culture of kidney cells from vitamin D deficient chicks is described. After four days in culture the cells reach confluency and retain their ability to metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. Addition of one unit of bovine parathyroid hormone to the culture medium for 48 hours prior to assay had no effect on the cells' ability to produce 1,25-dihydroxy vitamin D3, whereas after 24 hours in the presence of 5×10?8M 1,25-dihydroxyvitamin D3 the cells produced not this metabolite, but 24,25-dihydroxyvitamin D3. This cell culture system will allow the investigation of the regulation of renal 25-hydroxyvitamin D3 metabolism under controlled in vitro conditions.  相似文献   

10.
To evaluate possible functional roles for 24,25-dihydroxyvitamin D3, 24,24-difluoro-25-hydroxyvitamin D3 has been synthesized and shown to be equally as active as 25-hydroxyvitamin D3 in all known functions of vitamin D. The use of the difluoro compound for this purpose is based on the assumption that the C-F bonds are stable in vivo and that the fluorine atom does not act as hydroxyl in biological systems. No 24,25-dihydroxyvitamin D3 was detected in the serum obtained from vitamin D-deficient rats that had been given 24,24-difluoro-25-hydroxyvitamin D3, while large amounts were found when 25-hydroxyvitamin D3 was given. Incubation of the 24,24-difluoro compound with kidney homogenate prepared from vitamin D-replete chickens failed to produce 24,25-dihydroxyvitamin D3, while the same preparations produced large amounts of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Kidney homogenate prepared from vitamin D-deficient chickens produced 24,24-difluoro-1,25-dihydroxyvitamin D3 from 24,24-difluoro-25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. In binding to the plasma transport protein for vitamin D compounds, 24,24-difluoro-25-hydroxyvitamin D3 is less active than 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3. In binding to the chick intestinal cytosol receptor, 24,24-difluoro-25-hydroxyvitamin D3 is more active than 25-hydroxyvitamin D3 which is itself more active than 24R,25-dihydroxyvitamin D3. The 24,24-difluoro-1,25-dihydroxyvitamin D3 is equal to 1,25-dihydroxyvitamin D3, and both are 10 times more active than 1,24R,25-trihydroxyvitamin D3 in this system. These results provide strong evidence that the C-24 carbon of 24,24-difluoro-25-hydroxyvitamin D3 cannot be hydroxylated in vivo, and, further, the 24-F substitution acts similar to H and not to OH in discriminating binding systems for vitamin D compounds.  相似文献   

11.
The binding of metabolites of vitamin D and their analogs to the 3.7S chick intestinal cytosol receptor protein has been specifically studied by competitive binding techniques and polyethylene glycol precipitation of the complex. The structural requirements for the interaction between the vitamin D molecule and the receptor could be assessed without the nuclear chromatin binding step. These measurements have shown that 1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D2 are equally competitive and are the most active. Of the structural features of the compounds, the 1α-hydroxyl is most important followed by the 25-hydroxyl and the 3β-hydroxyl. The addition of a second hydroxyl near carbon 25 markedly reduces binding whether on the 26 carbon or the 24 carbon. A hydroxyl on C-24 could substitute to some degree for the 25-hydroxyl inasmuch as 24-hydroxyvitamin D3 was much more effective than vitamin D3 but less effective than 25-hydroxyvitamin D3. In general the patterns of binding affinities correlated well with the biological activity of the various analogs strongly supporting a physiological role for the 1,25-dihydroxyvitamin D3 binding protein. It also suggests that of the two-step receptor mechanism, the structural specificity is located in the initial interaction of the 1,25-dihydroxyvitamin D3 and the cytosol receptor.  相似文献   

12.
As a further means of evaluating 1,25-dihydroxyvitamin D3-parathyroid gland interaction and its relation to calcium homeostasis, a comparative study of the subcellular localization of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]in the parathyroid glands, intestinal mucosa, kidney, and liver of rachitic chickens has been carried out. Only in the chromatin fraction from parathyroids and intestinal mucosa could there be demonstrated selective and specific localization of the 1,25(OH)2D3. The chromatin-bound picomoles of 1,25(OH)2D3 (per gram of tissue) was in the ratio (mucosa:parathyroids:kidney:liver) of 1.0:0.23:0.11:0.17 2 h after an intracardial injection of 290 pmol of [3H]1,25(OH)2D3. This same ratio after a 30-min (23 °C) homogenate incubation with 1 × 10?8m [3H]1,25(OH)2D3 was 1.0:1.0:0.10:0.03. Analogous results were obtained when reconstituted chromatin and cytosol fractions from the different tissues were compared for chromatin localization efficiency. This chromatin localization of 1,25(OH)2D3 in the parathyroid glands was temperature dependent. In addition, parathyroid glands were found to contain 3.0–3.5 S cytoplasmic and KCl-extractable chromatin receptors specific for 1,25(OH)2D3.  相似文献   

13.
A primary confluent culture of epithelial cells from rat kidney has been developed. These cells possess a 3.2–3.4 S high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3. They metabolize 25-hydroxyvitamin D3 to at least five metabolites. Two have been identified as 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. Two others have been identified by means of physical data and cochromatography as trans 19-nor-10-oxo-25-hydroxyvitamin D3 and the other as its cis isomer. These two “metabolites” have not been observed in vivo, but one of them (cis) comigrates with 1,25-dihydroxyvitamin D3 on straight-phase high-performance liquid chromatography. Thus, mere cochromatography on high-performance liquid chromatography is not sufficient to identify critical vitamin D metabolites.  相似文献   

14.
The structural features of 1,25-dihydroxyvitamin D3 that permit its high affinity binding to a 3.7 S protein from chick intestinal cytosol were determined in a series of binding and competition experiments analyzed by sucrose density gradient centrifugation. Optimal binding to the 3.7 S protein was achieved when both 1α- and 25-hydroxyls were present in the vitamin D3 molecule. Modification of the side chain by the introduction of a methyl on C-24 and a double bond on C-22,23 (1,25-dihydroxyvitamin D2) did not alter the binding of 1,25-dihydroxyvitamin D3, but significantly diminished the binding of 25-hydroxyvitamin D3. However, introduction of a hydroxyl on C-24 decreased the ability of either 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 to compete, especially when the 24-hydroxyl was in the S configuration. These results reveal that the 3.7 S protein requires specific ligand structural features for binding and suggest that metabolite discrimination by the chick intestinal receptor system is likely located in the 3.7 S cytosol protein.  相似文献   

15.
A new, highly sensitive and relatively convenient method has been developed for the determination of 1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D2 in blood plasma. The method involves a simplified and more specific extraction procedure, new rapid and effective methods of purification, and a competitive binding assay using intestinal cytosol from rachitic chicks. The method also includes a procedure for stabilizing the cytosol binding protein and a convenient procedure for the separation of bound from free 1,25-dihydroxyvitamin D3 with the use of polyethylene glycol. The recovery of 1,25-dihydroxyvitamin D3 during extraction and purification is 68% and triplicate determinations can be made on a 5-ml plasma sample. With this method, rachitic chick plasma, plasma from anephric patients, and plasma from patients suffering severe endstage renal failure show no detectable 1,25-dihydroxyvitamin D, while normal human values have been found to be 29 ± 2 pg/ml.  相似文献   

16.
Previous studies have demonstrated that unoccupied 1,25-dihydroxyvitamin D3 receptors are associated with crude chromatin under hypotonic conditions invitro. The data presented herein show that unoccupied 1,25-dihydroxyvitamin D3 receptors appear to be associated with chromatin prior to solubilization by dilution/homogenization in both high and low salt buffers. Additionally the unoccupied receptors are recovered nearly quantitatively from purified nuclei. These results suggest that unoccupied 1,25-dihydroxyitamin D3 receptors may be localized within nuclei invivo.  相似文献   

17.
Rats maintained on a diet low in phosphorus produce 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3 whether they have been thyroparathyroidectomized or not. On the other hand, rats maintained on low-calcium diets produce 1,25-dihydroxyvitamin D3, but lose this ability within 48 hr after thyroparathyroidectomy. This loss of ability to synthesize 1,25-dihydroxyvitamin D3 can be prevented or be restored by replacing their drinking water with calcium gluconate-glucose solution which returns their high serum inorganic phosphorus to normal levels. In thyroparathyroidectomized rats under a variety of conditions, the ability to synthesize 1,25-dihydroxyvitamin D3 correlates with serum inorganic phosphorus values below 7–8 mg/100 ml while the ability to synthesize 24,25-dihydroxyvitamin D3 correlates with serum phosphorus values above 7–8 mg/100 ml. There is in addition a close correlation between reduced kidney cortex inorganic phosphorus levels and the synthesis of 1,25-dihydroxyvitamin D3. It is suggested that the renal tubular cell inorganic phosphorus level underlies the regulation of synthesis of 1,25-dihydroxyvitamin D3 in the kidney and that the parathyroid hormone and calcitonin regulate 1,25-dihydroxyvitamin D3 synthesis via their effects on renal cell inorganic phosphorus levels.  相似文献   

18.
An improved radioreceptor assay for 1,25-dihydroxyvitamin D in human plasma   总被引:4,自引:0,他引:4  
We describe a modified assay technique for quantitating 1,25-dihydroxyvitamin D in plasma. The method involves a rapid extraction of the hormone using minicolumn (made of granular diatomaceous earth) chromatography followed by single-step purification on high-performance liquid chromatography. Quantitation of plasma 1,25-dihydroxyvitamin D is achieved by a radioligand receptor assay employing lyophilized cytosolic receptor protein from chick intestine and high-specific-activity 1,25-dihydroxy[3H]vitamin D3 (166 Ci/mmol). A new incubation medium including an ethanol extract of vitamin D-deficient chick serum yields high specific binding and improves the precision of the radioassay. Bound and free hormone are separated with dextran-coated charcoal of equivalent particle size. The method is sensitive to 0.5 pg/tube with a practical detection range of 1–20 pg/tube, permitting duplicate assay of endogenous 1,25-dihydroxyvitamin D in plasma volumes as small as 0.5 ml. The intra- and interassay coefficient of variation are 5 and 9%, respectively, and the method is valid over a wide-range sample dilution. This assay technique was applied to the measurement of plasma 1,25-dihydroxyvitamin D hormone concentration in normal young adults (55.2 ± 13.6 pg/ml; n = 20) and in patients with chronic renal failure (13.5 ± 5.2 pg/ml; n = 9) and primary hyperparathyroidism (83.3 ± 18 pg/ml; n = 10).  相似文献   

19.
Studies from many laboratories have reported apparent molecular weights for the chick intestinal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] receptor varying from 47,000 to 67,000 daltons. We report here that in the presence of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF, 0.3 mM) and in the presence or absence of ligand, the apparent molecular weight of the receptor is 99,700 ± 9,400 (SD) daltons (as determined by gel filtration). In the absence of PMSF, however, the unoccupied receptor migrates with an apparent molecular weight of 51,400 ± 5,700 (SD) daltons. This smaller form of the 1,25(OH)2D3 receptor, upon incubation with [3H]-1,25(OH)2D3 in the presence of PMSF, then migrates with an apparent molecular weight of 95,900 ± 7,300 (SD) daltons. These results suggest the presence of heretofore unappreciated multiple molecular forms of the chick intestinal 1,25(OH)2D3 receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号