首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Kyriakakis P  Tipping M  Abed L  Veraksa A 《Fly》2008,2(4):229-235
Tandem affinity purification (TAP) has been widely used for the analysis of protein complexes. We investigated the parameters of the recently developed TAP method (GS-TAP) and its application in Drosophila. This new tag combination includes two Protein G modules and a streptavidin binding peptide (SBP), separated by one or two TEV protease cleavage sites. We made pMK33-based GS-TAP vectors to allow for generation of stable cell lines using hygromycin selection and inducible expression from a metallothionein promoter, as well as pUAST-based vectors that can be used for inducible expression in flies. Rescue experiments in flies demonstrated that the GS-TAP tag preserves the function of the tagged protein. We have done parallel purifications of proteins tagged with the new GS-TAP tag or with the conventional TAP tag (containing the Protein A and calmodulin binding peptide domains) at the amino terminus, using both cultured cells and embryos. A major difference between the two tags was in the levels of contaminating proteins, which were significantly lower in the GS-TAP purifications. The GS-TAP procedure also resulted in higher yield of the bait protein. Overall, GS-TAP is an improved method of protein complex purification because it provides a superior signal-to-noise ratio of the bait protein relative to contaminants in purified material.  相似文献   

2.
Epitope tagging of expressed proteins is a versatile tool for the detection and purification of the proteins. This approach has been used in protein-protein interaction studies, protein localization, and immunoprecipitation. Among the most popular tag systems is the FLAG epitope tag, which is recognized by three monoclonal antibodies M1, M2, and M5. We describe novel approaches to the detection of epitope-tagged proteins via fluorescence resonance energy transfer on beads. We have synthesized and characterized biotinylated and fluorescein-labeled FLAG peptides and examined the binding of FLAG peptides to commercial streptavidin beads using flow cytometric analysis. A requirement of assay development is the elucidation of parameters that characterize the binding interactions between component systems. We have thus compiled a set of Kd values determined from a series of equilibrium binding experiments with beads, peptides, and antibodies. We have defined conditions for binding biotinylated and fluoresceinated FLAG peptides to beads. Site occupancies of the peptides were determined to be on the order of several million sites per bead and Kd values in the 0.3-2.0 nM range. The affinity for antibody attachment to peptides was determined to be in the low nanomolar range (less than 10 nM) for measurements on beads and solution. We demonstrate the applicability of this methodology to assay development, by detecting femtomole amounts of N-terminal FLAG-bacteria alkaline phosphatase fusion protein. These characterizations form the basis of generalizable and high throughput assays for proteins with known epitopes, for research, proteomic, or clinical applications.  相似文献   

3.
In mammalian cells, when tandem affinity purification approach is employed, the existence of untagged endogenous target protein and repetitive washing steps together result in overall low yield of purified/stable complexes and the loss of weakly and transiently interacting partners of biological significance. To avoid the trade‐offs involving in methodological sensitivity, precision, and throughput, here we introduce an integrated method, biotin tagging coupled with amino acid‐coded mass tagging, for highly sensitive and accurate screening of mammalian protein–protein interactions. Without the need of establishing a stable cell line, using a short peptide tag which could be specifically biotinylated in vivo, the biotin‐tagged target/bait protein was then isolated along with its associates efficiently by streptavidin magnetic microbeads in a single step. In a pulled‐down complex amino acid‐coded mass tagging serves as “in‐spectra” quantitative markers to distinguish those bait‐specific interactors from non‐specific background proteins under stringent criteria. Applying this biotin tagging coupled with amino acid‐coded mass tagging approach, we first biotin‐tagged in vivo a multi‐functional protein family member, 14‐3‐3ε, which was expressed at close to endogenous level. Starting with approximately 20 millions of 293T cells which were significantly less than what needed for a tandem affinity purification run, 266 specific interactors of 14‐3‐3ε were identified in high confidence.  相似文献   

4.
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.  相似文献   

5.
Identification of proteins in RNA-protein complexes is an important step toward understanding regulation of RNA-based processes. Because of the lack of appropriate methodologies, many studies have relied on the creation of in vitro assembled RNA-protein complexes using synthetic RNA and cell extracts. Such complexes may not represent authentic RNPs as they exist in living cells as synthetic RNA may not fold properly and nonspecific RNA-protein interactions can form during cell lysis and purification processes. To circumvent limitations in current approaches, we have developed a novel integrated strategy namely MS2 in vivo biotin tagged RNA affinity purification (MS2-BioTRAP) to capture bona fide in vivo-assembled RNA-protein complexes. In this method, HB-tagged bacteriophage protein MS2 and stem-loop tagged target or control RNAs are co-expressed in cells. The tight association between MS2 and the RNA stem-loop tags allows efficient HB-tag based affinity purification of authentic RNA-protein complexes. Proteins associated with target RNAs are subsequently identified and quantified using SILAC-based quantitative mass spectrometry. Here the 1.2 kb internal ribosome entry site (IRES) from lymphoid enhancer factor-1 mRNA has been used as a proof-of-principle target RNA. An IRES target was chosen because of its importance in protein translation and our limited knowledge of proteins associated with IRES function. With a conventionally translated target RNA as control, 36 IRES binding proteins have been quantitatively identified including known IRES binding factors, novel interacting proteins, translation initiation factors (eIF4A-1, eIF-2A, and eIF3g), and ribosomal subunits with known noncanonical actions (RPS19, RPS7, and RPL26). Validation studies with the small molecule eIF4A-1 inhibitor Hippuristanol shows that translation of endogenous lymphoid enhancer factor-1 mRNA is especially sensitive to eIF4A-1 activity. Our work demonstrates that MS2 in vivo biotin tagged RNA affinity purification is an effective and versatile approach that is generally applicable for other RNA-protein complexes.  相似文献   

6.
7.
The purification of low-abundance protein complexes and detection of in vivo protein–protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL–TAP–MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL–TAP–MS to study the MKK2–Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde–crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2–MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein–protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL–TAP–MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein–protein interactions.

XL–TAP–MS: a novel technique that allows purification of crosslinked, low abundant protein complexes from plant tissues under denatured conditions and detection of in vivo protein–protein interactions.  相似文献   

8.
The presence of affinity reagents such as immunoglobulin in preparations for sensitive mass spectrometry analyses can preclude the identification of low-abundance proteins of interest. We report a method whereby antisera are purified and biotinylated prior to use in immunoprecipitation that allows for its efficient removal from proteomic samples via streptavidin capture. This method can similarly be extended to other affinity reagents such as recombinant fusion proteins for enhanced identification of interacting proteins.  相似文献   

9.
Intrinsic affinity tags are useful tools for the study of macromolecular targets. Although polypeptide affinity tags are routinely used in purification and detection of protein complexes, there has been a relative lack of powerful RNA affinity tags that can be embedded within RNA sequences. Here, the preparation and use of two RNA affinity tags against Sephadex or streptavidin are described. The two tags have different strengths that make them appropriate for slightly different uses. One is a high-affinity ligand for streptavidin that can be specifically eluted by competition with biotin under otherwise native binding conditions. The other tag binds selectively to Sephadex beads, and can be eluted by competition with the soluble dextran that composes Sephadex. When properly placed within another RNA molecule, the tags can be used to effect dramatic purification of RNA or ribonucleoprotein complexes from complex mixtures of cellular RNA.  相似文献   

10.
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.  相似文献   

11.
Abstract

The current revolution in proteomics has been generated by the combination of very sensitive mass spectrometers coupled to microcapillary liquid chromatography, specific proteolysis of protein mixtures and software that is capable of searching vast numbers of mass measurements against predicted peptides from sequenced genomes. The challenges of post‐genomic plant biology include characterization of protein function, post‐translational modifications and composition of protein complexes as well as deciphering protein complements in intracellular compartments – proteomes of cell organelles. In this review we summarize the current mass spectrometry methods currently being used in plant proteomics and discuss the various tagging strategies that are being used for purification and proteomic analysis of plant protein complexes.

Abbreviations: BCCD, biotin carboxyl carrier protein domain; CBP, calmodulin‐binding protein; CID, collision‐induced dissociation; ESI, electrospray ionization; EST, expressed sequence tag; FT‐ICR, Fourier transform ion cyclotron resonance; GFP, green fluorescent protein; GST, glutathione S‐transferase; HA, haemagglutinin; HILEP, hydroponic isotope labelling of entire plants; His, histidine; HPB, HA–PreScission–Biotin; HPLC, high‐performance liquid chromatography; ICAT, isotope‐coded affinity tags; ICPL, isotope‐coded protein label; iTRAQ, isobaric tag for relative and absolute quantification; LC, liquid chromatography; MALDI, matrix‐assisted laser desorption ionization; MBP, maltose‐binding protein; MS, mass spectrometry; SDS‐PAGE, sodium dodecyl sulphate‐polyacrylamide gel electrophoresis; SILAC, stable isotope labelling with amino acids in cell culture; SILIP, stable isotope labelling in planta; Strep, streptavidin; TAP, tandem affinity purification; TBP, TATA‐box‐binding protein; TOF, time‐of‐flight; UPLC, ultraperformance liquid chromatography  相似文献   

12.
Monomeric forms of avidin and streptavidin [(strept)avidin] have many potential applications. However, generation of monomeric (strept)avidin in sufficient quantity is a major limiting factor. We report the successful intracellular production of an improved version of monomeric streptavidin (M4) in a soluble and functional state at a level of approximately 70 mg/L of an Escherichia coli shake flask culture. It could be affinity purified in one step using biotin agarose with 70% recovery. BIAcore biosensor analysis using biotinylated bovine serum albumin confirmed its desirable kinetic properties. Two biotinylated proteins with different degrees of biotinylation (5.5 and 1 biotin per protein) pre-mixed with cellular extracts from Bacillus subtilis were used to examine the use of M4-agarose in affinity purification of protein. Both biotinylated proteins could be purified in high purity with 75-80% recovery. With the mild elution and matrix regeneration conditions, the M4-agarose had been reused four times without any detectable loss of binding capability. The relatively high-level overproduction and easy purification of M4, excellent kinetic properties with biotinylated proteins and mild procedure for protein purification make vital advancements in cost-effective preparation of monomeric streptavidin affinity matrix with desirable properties for purification of biotinylated molecules.  相似文献   

13.
Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins.  相似文献   

14.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

15.
16.
A family of specific cloning vectors was constructed to express in the cyanobacterium Anabaena sp. PCC7120 recombinant C-phycocyanin subunits with one or more different tags, including the 6xHis tag, oligomerization domains, and the streptavidin-binding Strep2 tag. Such tagged alpha or beta subunits of Anabaena sp. PCC7120 C-phycocyanin formed stoichiometric complexes in vivo with appropriate wild-type subunits to give constructs with the appropriate oligomerization state and normal posttranslational modifications and with spectroscopic properties very similar to those of unmodified phycocyanin. All of these constructs were incorporated in vivo into the rod substructures of the light-harvesting complex, the phycobilisome. The C-terminal 114-residue portion of the Anabaena sp. PCC7120 biotin carboxyl carrier protein (BCCP114) was cloned and overexpressed and was biotinylated up to 20% in Escherichia coli and 40% in wild-type Anabaena sp. His-tagged phycocyanin beta--BCCP114 constructs expressed in Anabaena sp. were >30% biotinylated. In such recombinant phycocyanins equipped with stable trimerization domains, >75% of the fusion protein was specifically bound to streptavidin- or avidin-coated beads. Thus, the methods described here achieve in vivo production of stable oligomeric phycobiliprotein constructs equipped with affinity purification tags and biospecific recognition domains usable as fluorescent labels without further chemical manipulation.  相似文献   

17.
The quality of sequencing results is to a large extent determined by the purity of the template and the purification of the sequencing products. Fragments that can act as unspecific primers and templates are removed before gel analysis, and the background of unspecific signals is highly reduced. Purification of the sequencing products is needed to remove salts, nucleotides, proteins and template DNA that can interfere with the gel separation. We have developed a product, DYNAPURE Dye Terminator Removal, that specifically isolates and purifies the sequencing products in 10 min. The method is based on biotinylated sequencing primers and super-paramagnetic streptavidin beads. A PCR product is sequenced using a biotinylated sequencing primer, and the sequencing products are then bound to streptavidin beads in a 5-min reaction. The bead-DNA complexes are magnetically separated from the rest of the solution, and the remaining buffer constituents are washed away with TE buffer or with 70% ethanol. The whole procedure can be automated on liquid-handling robots fitted with a magnet station. The method eliminates purification of templates before cycle sequencing.  相似文献   

18.
Most current methods for purification and identification of protein complexes use endogenous expression of affinity-tagged bait, tandem affinity tag purification of protein complexes followed by specific elution of complexes from beads, and gel separation and in-gel digestion prior to mass spectrometric analysis of protein interactors. We propose a single affinity tag in vitro pull-down assay with denaturing elution, trypsin digestion in organic solvent, and LC-ESI MS/MS protein identification using SEQUEST analysis. Our method is simple and easy to scale-up and automate, making it suitable for high-throughput mapping of protein interaction networks and functional proteomics.  相似文献   

19.
Aptamers are synthetic nucleic acid‐based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer‐based affinity purification for His‐tagged proteins was developed. Two different aptamers directed against the His‐tag were immobilized on magnetic beads covalently. The resulting aptamer‐modified magnetic beads were characterized and successfully applied for purification of different His‐tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer‐modified magnetic beads and have shown their long‐term stability over a period of 6 months. Biotechnol. Bioeng. 2011;108: 2371–2379. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号