首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
光学分子成像技术是在活体复杂的组织区域环境内细胞形态、运动与功能研究的最佳手段之一,极大地推进了免疫学的发展.肝脏是机体新陈代谢和解毒的重要器官,也被视为一个免疫器官.解析肝脏免疫基本特性和功能,对防治肝脏疾病以及全身性相关疾病具有重要意义.活体可视化研究肝脏区域生理或者病理状态下免疫应答,提供关键事件的多细胞参与及其彼此交互的时空动态信息,能极大地丰富对肝脏独特免疫反应的认知.本文将重点阐述目前活体肝脏成像的技术与方法以及光学显微成像技术,例如多光子激发显微成像与转盘共聚焦成像在肝脏免疫中的应用,并展望活体肝脏成像今后的发展方向和面临的机遇与挑战.  相似文献   

2.
细胞作为生命体基本的结构和功能单元,在生物、医学等领域有着非常重要的研究意义。随着现代科学和技术的发展,科学家们借助电镜对细胞以及细胞器的空间结构已经有非常清晰的认识,但是对它们的功能以及细胞之间的相互作用却了解得非常少,而这恰恰又是疾病治疗和药物开发亟需了解的信息,因此对离体活细胞(简称活细胞)和活体生物组织细胞(简称活体细胞)中亚细胞器的研究变得非常重要。然而细胞中许多细胞器的结构在纳米量级,传统的光学成像技术由于受到光学衍射极限的限制是无法观察到纳米量级的生物结构,因此光学超分辨成像技术是目前研究亚细胞器结构和功能的有效工具。在所有光学超分辨显微技术中,受激发射损耗显微术(stimulated emission depletionmicroscopy,STED)由于具有实时成像、三维超分辨和断层成像的能力,非常适合用于纳米尺度的活细胞和活体细胞成像研究,而且STED超分辨成像技术经过近几十年的发展,已经广泛用于活细胞甚至活体小鼠细胞的超分辨动态观测。本文总结了近年来活细胞和活体小鼠神经元细胞等领域STED超分辨成像的研究进展,介绍了用于活细胞和活体细胞STED超分辨成像的荧光染料...  相似文献   

3.
活体动物体内光学成像技术的研究进展及其应用   总被引:2,自引:0,他引:2  
王怡  詹林盛 《生物技术通讯》2007,18(6):1033-1035
活体动物体内光学成像是利用基因改构进行内源性成像试剂或外源性成像试剂标记细胞、蛋白或DNA,从而非侵入性地报告小动物体内的特定生物学事件的技术。活体成像可以直观灵敏地监测基因的表达模式、标记和示踪细胞、探讨蛋白间的相互作用,因而这一技术被广泛地用于分析基因的表达模式、评价基因治疗效果、评估肿瘤的发生和转移、监测移植器官等。简要综述了现有活体动物体内光学成像技术的基本原理、技术进展和相关应用。  相似文献   

4.
活体动物体内光学成像技术的研究进展   总被引:7,自引:2,他引:7  
张怡  韩彧  赵春林 《生命科学》2006,18(1):25-30
生物发光和荧光成像作为近年来新兴的活体动物体内光学成像技术,以其操作简便及直观性成为研究小动物活体成像的一种理想方法,在生命科学研究中得以不断发展。利用这种成像技术,可以直接实时观察标记的基因及细胞在活体动物体内的活动及反应。利用光学标记的转基因动物模型可以研究疾病的发生发展过程,进行药物研究及筛选等。本文综述了现有活体动物体内光学成像技术的原理、应用领域及发展前景,比较了生物发光与几种荧光技术的不同特点和应用。  相似文献   

5.
光学透明技术是一种通过各种化学试剂,将原本不透明的生物样本实现透明化,并在光学显微镜下深度成像的技术。结合多种光学显微成像新技术,光学透明技术可对整个组织进行成像和三维重建,深度剖析生物体内部空间特征与形成机制。近年来,多种植物光学透明技术和多尺度成像技术被陆续研发,并取得了丰硕的研究成果。该文综述了生物体光学透明技术的基本原理和一些新技术,重点介绍基于光学透明技术开发的新型成像方法及其在植物成像与细胞生物学中的应用,为后续植物整体、组织或器官的透明、成像与三维重构及功能研究提供理论依据和技术支持。  相似文献   

6.
付玲 《生物物理学报》2007,23(4):314-322
大脑功能的成像检测在认知神经科学领域具有极其重要的意义。现代光子学技术的发展为认知脑成像提供了新的研究手段,在神经系统信息处理机制研究中发挥重要作用。文章介绍了在神经元、神经元网络、特定脑皮层功能构筑以及系统与行为等不同层次开展神经系统信息处理机制研究的各种光学成像技术,包括多光子激发荧光显微成像、内源信号光学成像、激光散斑成像和近红外光学成像等,并评述了这些有特色的光学成像技术在多层次获取和分析神经信息中的研究进展。  相似文献   

7.
绿色荧光蛋白(green fluorescent protein,GFP)及其突变体作为报告基因,已被广泛应用于基因表达调控、蛋白质空间定位、生物分子之间相互作用、转基因动物以及药物药效评价和作用机理研究等方面,极大地推动了现代生物学的发展.随着光电信息技术的不断进步,基于荧光报告基因的光学分子成像技术将在细胞、细胞网络、组织、器官和个体等不同层次实现分子与细胞事件的实时可视化,从而在重大疾病的早期诊断和药物研发中发挥重要作用.  相似文献   

8.
肝脏是重要的代谢调控和药物解毒器官,执行体内多种生理功能。肝脏疾病已经越来越严重地影响着人体健康和生存质量。考虑到临床研究和转化医学的迫切需求,人们必须深入研究肝脏内各种细胞特别是肝实质细胞和胆管细胞的分化成熟过程及分子调控机制。该文概述了肝脏内起源于内胚层的肝实质细胞和胆管分化成熟的发育过程,总结了调控此过程的信号通路和转录因子,并简要介绍了最新技术对于肝脏发育研究的推动作用。这些结果对于人们在体外高效地诱导得到或建立更成熟、结构功能更完善的肝脏样细胞或肝脏类器官以及肝脏疾病的研究与治疗有重要意义。  相似文献   

9.
自发光学信号成像系统是近年来比较新颖的一项用于活体生物的基因或细胞活动的微观检测的光学技术,具有直观、操作简便以及分辨率高的特点。该技术主要分为生物发光成像技术和荧光成像技术,目前主要用于测定活体动物体内的细胞以及分子的活动或变化情况。由于该技术能够对动物体内的微观形态的变化进行精确的捕捉,对于癌症、基因表达、肿瘤以及其他病变均具有较好的监测作用。在本文中,将就自发光学信号成像系统在生物成像中的发展与应用进行详细的阐述。  相似文献   

10.
生物医药研究主要依赖动物模型及人源细胞系,但是这些研究系统往往不能模拟人类个体发育过程、疾病发生机制和药物反应,因此在向临床转化方面遇到极大的困难.类器官是能模拟体内器官结构和功能特征的体外3D细胞簇.本文按照肝脏类器官从简单到复杂的顺序,讨论了成体干细胞来源和多能干细胞分化的多种肝脏类器官模型,同时概括了肝脏类器官在疾病建模、药物反应、毒性测试及再生医学等方面的应用.  相似文献   

11.
基因表达产物蛋白质的亚细胞定位是解析基因生物学功能的重要证据之一。近年来出现的超分辨率光学成像技术已成功应用于人类和动物细胞中,预示着显微成像技术继激光共聚焦技术后的又一重要进步。由于植物细胞的特殊性和成像技术的研发取向,超分辨率光学成像技术在植物细胞蛋白质亚细胞定位的应用尚未见报道。该研究利用Delta Vision OMX显微镜技术,克服了叶绿体基粒中叶绿素自发荧光与融合蛋白荧光不易区分的缺陷,解决了受分辨率局限无法将植物细胞中蛋白质在亚细胞器内可视化精确定位的技术难题,成功地将植物蔗糖合成酶Zm SUS-SH1定位在烟草表皮细胞叶绿体基粒周围。该研究同时建立了一套基于撕片制片法的简便OMX显微镜制片方法,并针对OMX显微成像技术在植物细胞中蛋白质亚细胞定位的应用进行了讨论。  相似文献   

12.
肝脏疾病易感性差异大且个体间的肝脏细胞存在明显的异质性,因此开发体外能够长期存活并具有代谢功能的人体类肝组织细胞模型,对治疗终末期肝病、开展肝脏致病机理研究及药物筛选具有重要意义。过去十年中,体外三维类器官模型发展迅猛,为疾病模拟、精准化治疗领域的研究提供了新的工具,显示出巨大潜力。肝脏类器官具有患者的基因表达与突变特征,在体外能够较长时间地保持肝脏细胞功能,已被应用于疾病模拟及药物有效性研究,并具有进行原位或异位移植发挥治疗作用的应用潜能。就干细胞、肝脏原代细胞等不同来源的肝脏类器官的发展及近年的研究进展作了综述,以期为肝脏类器官在疾病建模、药物发现和器官移植领域的研究和应用提供新的思路。  相似文献   

13.
在中国,肝病是因病死亡的主要原因之一.揭示肝脏疾病的发生发展机制,发现新的治疗靶点,以及建立医学治疗新方法,是关乎国计民生的重大课题.目前对于人类肝脏疾病的研究主要依赖于细胞系与动物模型,但是二维(two-dimensional, 2D)培养的细胞系缺少组织三维(three-dimensional, 3D)结构,而物种差异又限制了利用动物模型对人类肝脏疾病的进一步认识.类器官是一种新的体外培养系统,利用人类细胞构建的类器官体一方面能模拟体内器官的结构,另一方面体现了人类组织器官的功能,从而提供了新的研究模型.最近,肝脏类器官体技术也得到建立与发展,加深了人们对于肝脏疾病的认识,促进了药物靶点的研究,并催生了一些治疗方案的开发.本文将就肝脏类器官的疾病模拟和治疗应用进行综述.  相似文献   

14.
组织器官损伤修复和再生是生命科学领域最为复杂和重要的科学问题之一,任何组织器官都能快速响应损伤,通过内源性基因转录调控改变多种细胞命运属性实现创伤的修复与再生。绝大部分人体组织器官都不具备完美再生能力,然而,进化早期的许多动物以及绝大部分植物具有强大修复和再生能力。经年来,通过对这些模式生物的研究,随着单细胞测序技术的发展,通过遗传示踪、活体显微实时成像,对组织器官再生的关键细胞及其发生调控过程的认识有了显著的进步。该综述将针对损伤修复和再生关键细胞来源、损伤后基因转录调控以及快速损伤应激能力进行简单总结。由于篇幅有限,非常抱歉不能涵盖损伤修复和再生领域的所有研究。  相似文献   

15.
小动物活体成像技术在国内外得到越来越多的普及应用,极大地促进了生命科学特别是肿瘤研究的发展。本文就小动物活体成像技术的原理、标记方法和实际应用做简单介绍。  相似文献   

16.
活体生物发光成像技术及其在病毒感染研究中的应用   总被引:1,自引:0,他引:1  
生物发光是动物活体光学成像技术之一,因其反应灵敏、操作简单、数据精确,而被广泛地应用于生命科学研究多个领域,观测活体动物体内病毒复制、肿瘤生长等生命过程.生物发光技术采用荧光素酶基因标记细胞或病毒,与外源注射的底物荧光素发生反应,在冷CCD成像系统下显像并进行数据记录、分析.本文简要介绍活体生物发光成像这一新技术的原理...  相似文献   

17.
生物医学光子学是近年来受到国际生物医学界和光子学界关注的一个热点。随着最近几年的发展 ,该学科已包括了光子学、电子学、计算机、生命科学、数学、物理等学科的交叉与融合。生物医学光子学的研究必将对人类生命科学的发展产生重大影响。本书是一部重要的学术研究参考书 ,书中收集了最近几年在美国、加拿大、澳大利亚、日本等国家华人学者的学术论文。例如 :数字射线照相术、组织光学成像技术与图像重建、大脑活动与功能的近红外光学成像、双光子成像技术在神经科学中的应用、基于绿色荧光蛋白的显微活体成像等都是目前该领域的最新…  相似文献   

18.
正回顾免疫学发展史,每一次研究手段的重大突破与创新都极大地促进了免疫学科的发展.近10多年来,光学分子成像技术飞速发展,以其多色、时空动态、高分辨、跨尺度等优点,为直观可视化描述机体内复杂的细胞与分子事件提供了有效的手段.免疫学的系统化整合性研究已成为发展的大趋势,要真正解决免疫学重大科学问题需要依赖于多学科的密切交叉与合作.在此背景之下,免疫光子学这一交叉学科悄然兴起.免疫光子学主要包括两  相似文献   

19.
超分辨显微成像技术(super-resolution microscopy,SRM)可以绕过光学衍射极限对成像分辨率的限制,让以前观察不到的纳米级结构实现可视化,这一重大研究进展推动了现代生命科学和生物医学研究的进步与发展.细胞是生物体的基本组成单位,对活细胞内部的细微结构和动力学过程进行研究是掌握生命本质必不可少的途径.但由于成像原理或条件的限制,早期的SRM技术在活细胞成像应用方面受到了不同程度的限制.近几年来,随着SRM和相关技术的发展,SRM在活细胞成像研究中的应用也越来越多.本文简要介绍目前常见的几种SRM技术的基本原理和特点,并在此基础上着重阐述它们在活细胞成像应用中所取得的最新研究进展和发展方向.  相似文献   

20.
乳腺癌具有高转移率。使用小动物活体成像技术对乳腺癌的生长及转移情况实时监测定量分析可以帮助了解疾病机制及进行药物研究。二维成像对光学信号的定位与定量是相对的。随着计算机技术的进步,可以实现对采集的图像进行三维重建,精准量化光学信号,获得空间分布的三维信息。IVIS Spectrum小动物活体光学三维成像系统同时具有高灵敏的生物发光、荧光、切伦科夫辐射二维成像及三维扫描重建功能,是小动物活体光学成像的顶级系统。本文对人乳腺癌细胞(MDA-MB-231)进行慢病毒感染,在体外稳定表达荧光素酶后,选取重度联合免疫缺陷(SCID)小鼠进行原位乳腺癌模型的建立,通过IVIS Spectrum小动物活体光学三维成像系统对小鼠进行生物发光二维成像,无创观测肿瘤的生长及转移情况。本文的创新点是利用生物发光成像断层扫描技术对小鼠模型进行定量三维成像,使用系统自带的算法直接进行三维重建,同时结合鲸鱼优化算法(WOA)优化后的三维卷积的深度编码器-解码器的网络模型进行重建。通过CT图像验证两者的重建效果,得到肿瘤的深度信息,实现对乳腺癌的精准定量分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号