首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Using cultured bovine aortic endothelial cells, the effects of MCI-186, a radical scavenger, were studied on arachidonic acid metabolism and on the cell injury caused by 15-HPETE. MCI-186 at 3 X 10(-5) M enhanced prostacyclin production in the intact endothelial cells without affecting phospholipase A2. When endothelial cell homogenates were used as an enzyme source, it was found that MCI-186 stimulated the conversion of arachidonic acid to prostacyclin like phenol, perhaps by trapping OH radicals produced in the process of the conversion of PGG2 to PGH2. On the other hand, MCI-186 was found to inhibit lipoxygenase metabolism of arachidonic acid in cell free homogenates of rat basophilic leukemia cells. The lipoxygenase inhibition caused by 3 X 10(-5) M MCI-186 was almost equivalent to that caused by 3 X 10(-6) M BW 755C. MCI-186 remarkably protected against endothelial cell damage caused by 15-HPETE. 3 X 10(-5) M of 15-HPETE caused endothelial cell death in about 60% of the population: however, pretreatment of the cells with 10(-5) M of MCI-186 or concomitant addition of 10(-5) M of MCI-186 with 15-HPETE to the cultures prevented the cell death completely. These results suggest that MCI-186 may become an unique anti-ischemic drug.  相似文献   

2.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

3.
Cultured human umbilical vein endothelial cells (HUVEC) stimulated with thrombin are known to synthesize prostacyclin at least in part from arachidonate released by phospholipase A2, an enzyme directly activated by calcium. In this study, thrombin stimulation of Quin 2-loaded HUVEC caused rapid and dose-dependent rises in inositol trisphosphate (IP3) and cytosolic free calcium (Ca2+i) levels which preceded a similarly dose-dependent rise in prostacyclin production measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay (ED50 = 0.6-0.7 units/ml for all three effects). Thrombin induced these effects in the absence of extracellular calcium (EGTA) or in the presence of either 8-bromo-cAMP or the calmodulin inhibitor W7. Thrombin inactivated with either diisopropyl fluorophosphate or D-Phe-Pro-Arg-chloromethyl ketone was inactive. In contrast, Quin 2-loaded cultured bovine aortic endothelial cells failed to respond to thrombin, although stimulation with trypsin elevated IP3 and Ca2+i levels and increased 6-keto-PGF1 alpha production. Restimulation of HUVEC with thrombin or histamine 5 min after an initial stimulation with thrombin (2 units/ml for 5 min) failed to induce a second rise in either IP3 or Ca2+i levels or further production of 6-keto-PGF1 alpha, whereas restimulation with ionomycin in the presence or absence of extracellular calcium elevated Ca2+i levels and induced further 6-keto-PGF1 alpha production. However, if the initial stimulation with thrombin was terminated by addition of D-Phe-Pro-Arg-chloromethyl ketone within 10-60 s, restimulation with a second dose of thrombin induced second rises in both IP3 and Ca2+i levels and additional 6-keto-PGF1 alpha production that were greatest when the initial thrombin stimulus was briefest. These results are consistent with the conclusion that IP3 acts as a second messenger by which thrombin elevates Ca2+i levels and initiates prostacyclin synthesis in HUVEC and that in vivo endothelial cells may be stimulated multiple times to synthesize prostacyclin if each period of stimulation is brief.  相似文献   

4.
We studied the effects of polyunsaturated fatty, acids such as arachidonic acid [20:4 (n-6)], eicosapentanoic acid [EPA, 20:5 (n-3)], and docosahexanoic acid [DHA, 22:6 (n-3)] on the changes of lipid profiles and prostacyclin production by cultured bovine aortic endothelial cells. The amounts of 6-keto-prostaglandin F1alpha(6-keto-PGF1alpha) and delta17-6-keto-PGF1alpha, non-enzymatic metabolites of prostacyclin (PGI2 and PGI3) in culture medium were measured by gas chromatography/selected ion monitoring. Endothelial cells were supplemented for five passages with arachidonic acid, EPA, or DHA, and the fatty acids of cell lipids and prostacyclin production in cultured medium were quantified. From the fatty acid analysis, the amounts of docosapentaenoic acid [22:5 (n-3)] were significantly increased in EPA-grown cells. In DHA-grown cells, the amounts of EPA were slightly increased compared to control cells. These cells produced similar amounts of PGI2 as the controls, but larger amounts of PGI3 under basal conditions. These findings suggest that EPA, docosapentaenoic acid, and DHA are interconverted to each other, and anti-aggregatory effects of EPA or DHA may be partially due to the stimulation of prostacyclin formation in endothelial cells.  相似文献   

5.
The effects of endothelin-1 (ET-1) on the release of prostacyclin from cultured bovine aortic endothelial cells were studied. ET-1 induced a time- and dose-dependent release of 6-keto PGF1 alpha, the stable metabolite of prostacyclin, with an apparent EC50 value of 3.0 +/- 0.9 nM (n = 6). ET-1 up to a concentration of 500 nM did not affect cellular integrity. Preincubation of the cells for 30 min with 10 microM indomethacin inhibited ET-1 (100 nM) - induced prostacyclin release by 90%. These findings indicate that ET-1 can directly stimulate prostacyclin release from endothelial cells probably through a receptor mediated mechanism.  相似文献   

6.
Endothelin (ET) is a potent vasoconstrictor peptide, released from endothelial cells, which is associated with prostaglandin (PG) release. The mechanism by which ET causes the release of PG is not clearly understood. We used rat aortic endothelial cells to investigate the role of calcium (Ca2+) in ET-1-induced prostacyclin (PGI2) release. ET-1 (10(-9) M) produced a significant increase in PGI2 release. Pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of diltiazem (voltage-sensitive L-type calcium channel blocker) produced significant inhibition of ET-1- and PDBu-induced PGI2 release. Inhibition was first noted at 10(-9) M and was complete at 10(-6) M. Conversely, pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of calcium channel blockers (thapsigargin, an intracellular calcium channel blocker or conotoxin, a voltage-sensitive N-type calcium channel blocker) produced no changes on ET-1- or PDBu-induced PGI2 release. These results provide further support for the concept that PKC mediates ET-induced PGI2 release in rat aortic endothelial cells via an increase in intracellular calcium and this increase is due to the influx of extracellular calcium and not to the release of calcium from the sarcoplasmic reticulum.  相似文献   

7.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p less than 0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 microM for 5 min) or PGH2 (4 microM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 +/- 5% of 21% O2 exposure values, n = 6, p less than 0.01) or PGH2 (31 +/- 3% of 21% O2 exposure values, n = 6, p less than 0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

8.
Conditioned medium was collected from vascular smooth-muscle cells grown in culture to determine if these cells synthesize vasoactive substances. The medium caused a short-acting endothelium-independent constriction of rat aorta, followed by a prolonged, endothelium-dependent relaxation. This relaxation was mediated through the release of endothelium-derived relaxing factor (EDRF) as it was abolished by the addition of methylene blue (5 x 10(-6) M), haemoglobin (10(-6) M) or methyl arginine, but was not affected by indomethacin (10(-5) M). Smooth-muscle medium stimulated the production of EDRF from both rat and rabbit thoracic aortic rings as well as from cultured bovine pulmonary artery endothelial cells. The prolonged stimulation of EDRF by smooth-muscle medium was not mimicked by known physiological stimuli to EDRF release; EDRF-stimulating activity was not affected when smooth-muscle cells were grown in the presence of indomethacin (10(-5) M), although serum in the medium was required. The EDRF-stimulating substance(s) in the smooth-muscle medium was heat stable and associated with a high molecular mass (30,000 greater than Mr greater than 3500) water-soluble species that is as yet unidentified.  相似文献   

9.
The correlation between the binding and processing of trypsin and its effect on prostacyclin (PGI2) production in cultured adult bovine aortic endothelial (ABAE) cells was studied. ABAE cells demonstrated an ability to produce PGI2 in a dose-response manner to trypsin at the range of 0.1-2.0 micrograms/ml with a saturation at a concentration of 1 microgram/ml. Likewise, 125I-trypsin binding to the cultured cells increased in a dose-response way and reached saturation at a concentration of about 1 microgram/ml; 125I-trypsin was bound to a specific high-affinity cell-surface receptor with a dissociation constant (Kd) of 1.5 X 10(-8) M and each of the confluent ABAE cells has about 1.2 X 10(5) such receptors sites. The cell-surface receptor for trypsin displayed specific characteristics and an excess amount of unlabeled trypsin successfully abolished 125I-trypsin binding while thrombin in excess failed to compete for 125I-trypsin binding. Only a small fraction of the cell-surface-bound 125I-trypsin was internalized and subsequently degraded by ABAE cells as compared to the process of 125I-trypsin internalization by human skin fibroblasts (HSF). This study demonstrated that the stimulatory effect of trypsin on prostacyclin production and release by ABAE cells might be mediated by a specific cell-surface receptor for trypsin on these cells distinct from the thrombin receptor.  相似文献   

10.
The production of prostacyclin (PGI2) by cultured porcine aortic endothelial cells, in response to serum and the calcium ionophore A23187, was inhibited by TMB-8, an antagonist of intracellular calcium mobilization. The calcium-channel blocker methoxyverapamil (D600) inhibited serum-induced PGI2 production in but had little effect on A23187-induced PGI2 production. Calmodulin activity was detected in endothelial-cell lysates and was inhibited by the calmodulin antagonist W7, which also inhibited PGI2 production in response to both agonists. Calcium and calmodulin appear to play an important role in mediating PGI2 production by the vascular endothelium.  相似文献   

11.
We have previously shown that neuropeptide Y (NPY) increases cytosolic free Ca2+ concentration [( Ca2+]i) in porcine aortic smooth muscle cells. In this study, specific NPY receptor binding sites were identified in the cells by use of [125I]Bolton-Hunter NPY [( 125I]BH-NPY). Binding was to a single population of the sites with a Kd of 1.1 +/- 0.2 nM and a Bmax of 0.68 +/- 0.10 pmol/mg protein. [125I]BH-NPY binding was displaced by NPY-related peptides including members of the pancreatic polypeptide (PP) family. The potency of these peptides other than human PP for displacing [125I]BH-NPY binding was substantially consistent with their potency for increasing [Ca2+]i. Human PP had no effect on [Ca2+]i even at 10(-5) M, but it inhibited the NPY-induced increase in [Ca2+]i with a potency comparable to that for displacing [125I]BH-NPY binding. NPY(13-36) was about 500 and 300 times less effective than porcine NPY in increasing [Ca2+]i and in displacing [125I]BH-NPY binding, respectively, showing that the NPY receptor in cultured vascular smooth muscle cells is of the Y1-type.  相似文献   

12.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Endothelin (ET) is a vasoconstrictor peptide released from endothelial cells that is known to cause prostaglandin (PG) release. The mechanism remains unclear. To determine whether the protein kinase C (PKC) signaling pathway is stimulated by endothelin, we pretreated rat aortic endothelial cells with either PKC activator or inhibitors and measured the release of prostacyclin (PGI2) by radioimmunoassay. ET (10(-9) M) produced a 10-fold increase in PGI2 release. Pretreatment with 10(-9) M of three different PKC inhibitors: 1-(5-isoquinolinesulfonyl) piperazine (CL), staurosporine, and 1-(5-isoquinolinesulfonyl-methyl) piperazine (H7) blocked ET induced PGI2 release. ET induced prostacyclin release was also blocked by pretreatment with inhibitors of either phospholipase A2 (7,7,dimethyleicosadienoic acid or trifluoromethyl ketone analogue) (10(-9) M) or cyclooxygenase (indomethacin) (10(-9) M). We conclude that ET activates PKC which activates phospholipase A2 which liberates arachidonic acid which increases PGI2 production and release.  相似文献   

14.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

15.
Indirect evidence, using organic calcium channel modulators suggests that calcium channels exist in endothelial cells. Using freshly prepared and cultured bovine aortic endothelial cells, we have studied the effect of calcium channel modulators on Fura-2 fluorescence and have examined the binding of the dihydropyridine, (+)[3H]PN200-110. In both isolated primary and cultured cells, external calcium (0.5-2 mM) and bradykinin (10(-8) M) increased the intracellular calcium concentration. In cultured cells, the increase in calcium was not significantly attenuated by preincubation with nitrendipine (10(-8) M) or d-cis-diltiazem (10(-6) M). The calcium agonists (-)Bay k8644 and (+)202-791 had no effect on intracellular calcium concentration, but other agonists including ATP (10(-4) M) and thrombin (1.5 micrograms/ml) significantly increased the calcium concentration. Competition binding studies with (+)[3H]PN200-110 indicated specific binding of this ligand with a KD of 57 nM and a Bmax of 2.1 pmol/10(6) cells. While these data do not provide convincing evidence for the existence of calcium channels in cultured or fresh bovine aortic endothelial cells, explanations may yet reconcile our observations with the presence of calcium channels in these cells.  相似文献   

16.
In bovine aortic endothelial cells, phorbol 12-myristate, 13-acetate induced a smaller stimulation of prostacyclin release than ionophore A23187: the combination of both agents was highly synergistic. The responses of the bovine aortic smooth muscle were very different in the 2 preparations studied. In media explants cultured for short periods, neither phorbol 12-myristate, 13-acetate, nor A23187, alone or in combination, were able to increase prostacyclin release, whereas serotonin was an effective stimulus. In cultured smooth muscle cells, outgrown from the explants, phorbol 12-myristate, 13-acetate increased prostacyclin release to the same levels as A23187 or serotonin. It is concluded that increased cytosolic Ca++ level and protein kinase C activity induce a synergistic stimulation of endothelial prostacyclin. On the other hand, the phenotypic modulation of the arterial smooth muscle, from a contractile to a synthetic state, seems to be associated with a profound change in the control of prostacyclin.  相似文献   

17.
Angiotensin II (Ang II) has been shown to stimulate the release of immunoreactive endothelin (ET) from cultured bovine ECs. Also, Ang II activates phospholipase A2 (PLA2) in various tissues, resulting in the release of arachidonic acid and formation of prostaglandins. We used rat aortic endothelial cells to investigate the role of protein kinase C (PKC) in Ang II-induced release of both ET and prostacyclin (PGI2). The amount of ET and PGI2 produced were determined by radioimmunoassay. Ang II-induced the release of both ET and PGI2. Pretreatment with 10(-6) M of any one of the PKC inhibitors: 1-(5-isoquinolinesulfonyl) piperazine(CL), staurosporine, 1-(5-isoquinolinesulfonylmethyl)piperazine(H7), and calphostin C blocked AII-induced release of both ET and PGI2. In rat aortic endothelial cells that were treated with either AII or PDBu, PKC enzyme assay showed PKC was translocated from the cytosol to the membrane which indicates activation. This suggests that PKC mediates AII-induced ET and PGI2 release. In summary, AII activates PKC which inhibits rat aortic endothelial cells ET and PGI2 formation, and this inhibition can be overcome by pretreatment with PKC inhibitors.  相似文献   

18.
In a previous study, we found a marked difference in the release of a cytokine, neutrophil chemoattractant activity (NCA), from cultured endothelial cells exposed to acute decreases in ambient oxygen, depending on the vascular bed of origin. In the current study, we used this cytokine to evaluate the effect of long-term exposure to decreased oxygen on endothelial cell function. We found that, in aortic and pulmonary arterial endothelial cells maintained for months in decreased ambient oxygen (10 or 3% oxygen), exposure to acute decreases in ambient oxygen caused a change in the pattern of NCA release; however, the differential response between the two cell types persisted. Aortic endothelial cells release NCA when exposed acutely to a level of oxygen below that in which they have been chronically maintained. In contrast, pulmonary arterial endothelial cells release NCA only when exposed to 0% oxygen acutely, but only if grown chronically in 10% oxygen; otherwise there was no release of NCA. As another indicator of endothelial cell function, we evaluated the effects of acute hypoxic exposure on prostacyclin production by endothelial cells maintained in 21 or 3% oxygen. If grown in 21% oxygen, both cell types decreased prostacyclin production upon exposure to 0% oxygen. However, when grown in 3% oxygen, only aortic endothelial cells decreased prostacyclin production when exposed acutely to 0% oxygen; pulmonary arterial endothelial cell prostacyclin production did not change. This study demonstrating the persistence of a differential pattern of NCA release and the appearance of a differential pattern of prostacyclin production after a long-term decrease in environmental oxygen suggests that the capacity of certain vascular endothelial cells to respond to decreases in oxygen concentration is carried by the cell throughout its existence. Thus, in certain situations, vascular endothelial cells may be important in sensing acute decreases in ambient oxygen.  相似文献   

19.
Transforming growth factor alpha (TGF alpha) induces dose- and time-dependent stimulation of prostacyclin (PGI2) production by cultured human umbilical vein endothelial cells. The lowest stimulatory concentration of TGF alpha was 0.1 ng/ml and the maximal response, a 2.7-fold rise, was obtained with 10 ng/ml. The stimulation, which lasted at least 24 h, was blocked by cycloheximide and by indomethacin. TGF alpha induced PGI2 production at 10-100 times lower concentrations than did epidermal growth factor (EGF), although in stimulating endothelial cell growth the two factors were equipotent. This is the first demonstration that TGF alpha enhances PGI2 production by human cells. Moreover, this is the first evidence that it acts as both an agonist (growth) and a superagonist (PGI2 production) of EGF in the same cell type. I suggest that this phenomenon may be involved with the angiogenic activity of TGF alpha.  相似文献   

20.
We describe the effect of (-) epigallocatechin gallate (EGCg), one of catechins known in tea, on the prostacyclin (PGI) production by bovine aortic endothelial cells. The amounts of 6-keto-PGF(1alpha) and Delta(17)-6-keto-PGF(1alpha), stable metabolites of PGI(2) and PGI(3), released in culture medium were measured using gas chromatography/selected ion monitoring (GC/SIM). The prostacyclin production of endothelial cells was increased by EGCg in a dose- and time-dependent manner. The effect by EGCg was stronger than any other catechins (catechin, epicatechin, epigallocatechin, and epicatechin gallate). When endothelial cells incubated with EGCg and arachidonic acid (AA) or eicosapentaenoic acid (EPA), PGI(2), and PGI(3) production were increased greater than those incubated with AA or EPA alone. Furthermore, gallic acid, that also has a pyrogallol structure, increased PGI(2) production. These observations indicate that catechins increase the prostacyclin production and that the pyrogallol structure is significant to this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号