首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recognition of the translation initiation codon is thought to require dissociation of eIF1 from the 40 S ribosomal subunit, enabling irreversible GTP hydrolysis (Pi release) by the eIF2·GTP·Met-tRNAi ternary complex (TC), rearrangement of the 40 S subunit to a closed conformation incompatible with scanning, and stable binding of Met-tRNAi to the P site. The crystal structure of a Tetrahymena 40 S·eIF1 complex revealed several basic amino acids in eIF1 contacting 18 S rRNA, and we tested the prediction that their counterparts in yeast eIF1 are required to prevent premature eIF1 dissociation from scanning ribosomes at non-AUG triplets. Supporting this idea, substituting Lys-60 in helix α1, or either Lys-37 or Arg-33 in β-hairpin loop-1, impairs binding of yeast eIF1 to 40 S·eIF1A complexes in vitro, and it confers increased initiation at UUG codons (Sui phenotype) or lethality, in a manner suppressed by overexpressing the mutant proteins or by an eIF1A mutation (17–21) known to impede eIF1 dissociation in vitro. The eIF1 Sui mutations also derepress translation of GCN4 mRNA, indicating impaired ternary complex loading, and this Gcd phenotype is likewise suppressed by eIF1 overexpression or the 17–21 mutation. These findings indicate that direct contacts of eIF1 with 18 S rRNA seen in the Tetrahymena 40 S·eIF1 complex are crucial in yeast to stabilize the open conformation of the 40 S subunit and are required for rapid TC loading and ribosomal scanning and to impede rearrangement to the closed complex at non-AUG codons. Finally, we implicate the unstructured N-terminal tail of eIF1 in blocking rearrangement to the closed conformation in the scanning preinitiation complex.  相似文献   

2.
In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and β-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.  相似文献   

3.
eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui mutations in numerous factors. We conclude that both of eIF5''s functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.  相似文献   

4.
The universally conserved eukaryotic initiation factor (eIF), eIF1A, plays multiple roles throughout initiation: it stimulates eIF2/GTP/Met-tRNAiMet attachment to 40S ribosomal subunits, scanning, start codon selection and subunit joining. Its bacterial ortholog IF1 consists of an oligonucleotide/oligosaccharide-binding (OB) domain, whereas eIF1A additionally contains a helical subdomain, N-terminal tail (NTT) and C-terminal tail (CTT). The NTT and CTT both enhance ribosomal recruitment of eIF2/GTP/Met-tRNAiMet, but have opposite effects on the stringency of start codon selection: the CTT increases, whereas the NTT decreases it. Here, we determined the position of eIF1A on the 40S subunit by directed hydroxyl radical cleavage. eIF1A''s OB domain binds in the A site, similar to IF1, whereas the helical subdomain contacts the head, forming a bridge over the mRNA channel. The NTT and CTT both thread under Met-tRNAiMet reaching into the P-site. The NTT threads closer to the mRNA channel. In the proposed model, the NTT does not clash with either mRNA or Met-tRNAiMet, consistent with its suggested role in promoting the ‘closed’ conformation of ribosomal complexes upon start codon recognition. In contrast, eIF1A-CTT appears to interfere with the P-site tRNA-head interaction in the ‘closed’ complex and is likely ejected from the P-site upon start codon recognition.  相似文献   

5.
Eukaryotic translation initiation factor 2 (eIF2) has been implicated in the selection of the AUG codon as the start site for eukaryotic translation initiation, since mutations in its three subunits in yeast that allow the recognition of a UUG codon by the anticodon of the initiator Met-tRNAMet have been identified. All such mutations in the beta subunit of eIF2 (eIF2β) mapped to a region containing a putative zinc finger structure of the C2-C2 type, indicating that these sequences could be involved in RNA recognition. Another feature of eIF2β that could mediate an interaction with RNA is located in the amino-terminal sequences and is composed of three repeats of seven lysine residues which are highly conserved in other species. We show here the ability of eIF2β, purified from Escherichia coli as a fusion to glutathione S-transferase, to bind mRNA in vitro. Through a deletion analysis, mRNA binding was found to be dependent on the lysine repeats and a region encompassing the C2-C2 motif. Strong mRNA binding in vitro could be maintained by the presence of only one lysine or one arginine run but not one alanine run. We further show that only one run of lysine residues is sufficient for the in vivo function of eIF2β, probably through charge interaction, since its replacement by arginines did not impair cell viability, whereas substitution for alanines resulted in inviable cells. mRNA binding, but not GTP-dependent initiator Met-tRNAMet binding, by the eIF2 complex was determined to be dependent on the presence of the lysine runs of the beta subunit.  相似文献   

6.
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNAiMet) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNAiMetin vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNAiMet. In addition, AIMP3 discriminates Met-tRNAiMet from Met-charged elongator tRNA based on filter-binding assay. Pull‐down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNAiMet for the delivery of Met-tRNAiMet to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNAiMet bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNAiMet transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.  相似文献   

7.
Eukaryotic initiation factor 2A (eIF2A) is a 65-kDa protein that was first identified in the early 1970s as a factor capable of stimulating initiator methionyl-tRNAi (Met-tRNAMeti) binding to 40S ribosomal subunits in vitro. However, in contrast to the eIF2, which stimulates Met-tRNAMeti binding to 40S ribosomal subunits in a GTP-dependent manner, eIF2A didn't reveal any GTP-dependence, but instead was found to direct binding of the Met-tRNAMeti to 40S ribosomal subunits in a codon-dependent manner. eIF2A appears to be highly conserved across eukaryotic species, suggesting conservation of function in evolution. The yeast Saccharomyces cerevisae eIF2A null mutant revealed no apparent phenotype, however, it was found that in yeast eIF2A functions as a suppressor of internal ribosome entry site (IRES)-mediated translation. It was thus suggested that eIF2A my act by impinging on the expression of specific mRNAs. Subsequent studies in mammalian cell systems implicated eIF2A in non-canonical (non-AUG-dependent) translation initiation events involving near cognate UUG and CUG codons. Yet, the role of eIF2A in cellular functions remains largely enigmatic. As a first step toward characterization of the eIF2A function in mammalian systems in vivo, we have obtained homozygous eIF2A-total knockout (KO) mice, in which a gene trap cassette was inserted between eIF2A exons 1 and 2 disrupting expression of all exons downstream of the insertion. The KO mice strain is viable and to date displays no apparent phenotype. We believe that the eIF2A KO mice strain will serve as a valuable tool for researchers studying non-canonical initiation of translation in vivo.  相似文献   

8.
9.
Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.  相似文献   

10.
Only five of the nine subunits of human eukaryotic translation initiation factor 3 (eIF3) have recognizable homologs encoded in the Saccharomyces cerevisiae genome, and only two of these (Prt1p and Tif34p) were identified previously as subunits of yeast eIF3. We purified a polyhistidine-tagged form of Prt1p (His-Prt1p) by Ni2+ affinity and gel filtration chromatography and obtained a complex of ≈600 kDa composed of six polypeptides whose copurification was completely dependent on the polyhistidine tag on His-Prt1p. All five polypeptides associated with His-Prt1p were identified by mass spectrometry, and four were found to be the other putative homologs of human eIF3 subunits encoded in S. cerevisiae: YBR079c/Tif32p, Nip1p, Tif34p, and YDR429c/Tif35p. The fifth Prt1p-associated protein was eIF5, an initiation factor not previously known to interact with eIF3. The purified complex could rescue Met-tRNAiMet binding to 40S ribosomes in defective extracts from a prt1 mutant or extracts from which Nip1p had been depleted, indicating that it possesses a known biochemical activity of eIF3. These findings suggest that Tif32p, Nip1p, Prt1p, Tif34p, and Tif35p comprise an eIF3 core complex, conserved between yeast and mammals, that stably interacts with eIF5. Nip1p bound to eIF5 in yeast two-hybrid and in vitro protein binding assays. Interestingly, Sui1p also interacts with Nip1p, and both eIF5 and Sui1p have been implicated in accurate recognition of the AUG start codon. Thus, eIF5 and Sui1p may be recruited to the 40S ribosomes through physical interactions with the Nip1p subunit of eIF3.  相似文献   

11.
Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.  相似文献   

12.
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) stabilizes and protects mammalian methionyl-tRNA synthetase (MRS) and eukaryotic initiation factor 2 subunit gamma (eIF2γ), factors involved in the formation and the delivery of Met-tRNA i Met respectively, through the binding interactions. Due to the protections that MRS and eIF2γ are provided from the interactions with AIMP3, cellular levels of MRS and eIF2γ may be able to be maintained high enough for their canonical and/or non-canonical functions.  相似文献   

13.
Binding of the Met-tRNAMetf·eIF-2 GTP complex to the 40 S ribosomal subunit is the first step in initiation of eukaryotic protein synthesis. The extent of binding and the stability of the complex are enhanced by initiation factors eIF-3 and eIF-4C, AUG and elevated magnesium concentration. The reversibility of reaction steps occurring during the assembly of the initiation complex is measured as the rate of Met-tRNAMetf exchange in the initiation complex and its intermediates. This rate progressively decreases and Met-tRNAMetf binding becomes irreversible upon binding of mRNA. The association of the 40 S Met-tRNAMetf mRNA initiation complex with the 60 S ribosomal subunit is again reversible as long as elongation does not occur.  相似文献   

14.
Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α–ϵ), which assemble into a catalytic subcomplex (γ, ϵ) responsible for the GEF activity, and a regulatory subcomplex (α, β, δ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2BRSC). We report the crystal structures of eIF2Bβ and eIF2Bδ from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(βδ)2 complex. Combined with mutational and biochemical data, we show that eIF2BRSC exists as a hexamer in solution, consisting of two eIF2Bβδ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2BRSC and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn, Gcd and VWM/CACH mutations and the evolutionary history of the eIF2B complex.  相似文献   

15.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd substitutions enhance YKD-KD interactions in vitro, whereas Gcn substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.  相似文献   

16.
Phosphorylation of the α subunit of eukaryotic initiation factor 2 (elF-2α) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of elF-2α, Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORFI fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of elF-2 that delivers charged initiator tRNAiMet to the ribosome. When the levels of elF-2·GTP·Met-tRNAiMet ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of elF-2 by the protein kinase GCN2 decreases the concentration of elF-2·GTP·Met-tRNAiMet complexes by inhibiting the guanine nucleotide exchange factor for elF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of elF-2.  相似文献   

17.
18.
The 0.5M KCl wash of rabbit reticulocyte ribosomes (I fraction) catalyzes the deacylation of Met-tRNAfMet. Upon DEAE-cellulose column chromatography, the deacylase activity elutes with the 0.1M KCl wash of the column (f1) and is well-resolved from the peptide chain initiation factors (1–3). The deacylase activity is specific for Met-tRNAfMet (retic., E.coli). Other aminoacyl tRNAs tested including fMet-tRNAfMet (retic., E.coli), Phe-tRNA (E.coli), Val-tRNA (retic.), and Arg-tRNA (retic.) are completely resistant to the action of the deacylase. In the presence of the peptide chain initiation factor (IF1) and GTP, retic. Met-tRNAfMet forms the initiation complex Met-tRNAfMet:IF1:GTP (2), and in this ternary complex Met-tRNAfMet is not degraded by the deacylase. E.coli Met-tRNAfMet binds to IF1 independent of GTP, and in this complex, this Met-tRNAfMet is degraded by the deacylase.Prior incubation of f1 with Met-tRNAfMet (retic.) strongly inhibited protein synthesis initiation, presumably due to deacylation of the initiator tRNA. This inhibition by f1 was completely prevented when Met-tRNAfMet (retic.) was pre-incubated with peptide chain initiation factors.  相似文献   

19.
Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNAfMet). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNAfMet, as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNAfMet to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNAfMet. This accessory factor might be unnecessary when formylated Met-tRNAfMet is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Δfmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNAfMet due to loss of the MIS1 gene that encodes the mitochondrial C1-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis.  相似文献   

20.
NPM1 is a ubiquitously expressed nucleolar phosphoprotein, the gene for which maps to chromosome 5q35 in close proximity to a commonly deleted region associated with (del)5q, a type of myelodysplastic syndrome (MDS). This region is also a frequent target of deletions in de novo and therapy-related MDS/acute myeloid leukemia. Previous studies have shown that Npm1+/− mice develop an MDS-like disease that transforms to acute myeloid leukemia over time. To better understand the mechanism by which NPM1 haploinsufficiency causes an MDS phenotype, we generated factor-dependent myeloid cell lines from the bone marrow of Npm1+/+ and Npm1+/− mice and demonstrated compromised neutrophil-specific gene expression in the MNPM1+/− cells. We attribute these observations to increased levels of the shorter, dominant negative leukemogenic isoform (p30) of CCAAT enhancer-binding protein α (C/EBPα). We show that this increase is caused, in part, by elevated levels of the activated translation initiation factor eIF4E, overexpression of which also increases translation of C/EBPαp30 in HEK293 cells. In a positive feedback loop, eIF4E expression is further elevated both at the mRNA and protein levels by C/EBPαp30 but not by the full-length C/EBPαp42. Re-expression of C/EBPαp42 or NPM1 but not C/EBPαp30 in MNPM1+/− cells partially rescues the myeloid phenotype. Our observations suggest that the aberrant feed-forward pathway that keeps eIF4E and C/EBPαp30 elevated in NPM1+/− cells contributes to the MDS phenotype associated with NPM1 deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号